vuoi
o PayPal
tutte le volte che vuoi
AR(1)
- MA(1), MA(2), AR(1), ARMA(1,1)
-
-
E(yt) = E( α yt-1 + εt) = E(yt) + α E(yt-1) = 0
-
E(yt) = μ = E(yt-1)
|α| < 1
-
E(yt) = E( α yt-1 + εt) = α E(yt-1) + E(εt)
-
Stationario in Covarianza
- E(yt-1) = E(yt) = μ
(c)
-
E(ytεt) = E[(εt + θ εt-1) εt] = E(ετ2)
-
E(yt-1εt) = 0
E(εt2) = Var.(εt) = σ 2
- E(ytεt) = E[( α yt-1 + εt) εt] = α E(yt-1εt) + E( εt2)
- E(yt-1εt) = cov(yt-1, εt) = 0
E(εt2) = σ 2
(d)(1) Var(yt) = Var(yt) = Var(t + 0yt-1) = (2)
= Var(t) + 02Var(yt-1) + 20Cov(yt-1, t)
= (1 + 02)t2
(2o)Var(yt = Var(t + t-1 0 + 2t-2)
= Var(t) +02Var(t-1 + 2Var(t-2)
Tolociia di covarianze in quanto t ~wn
= (t + 02 + 22)t2
(3o) Var(yt)= Var(uyt, + t)
= 2Var(yt-1) + Var(t) + 2 Cov(yt-1, t)
= Var(qy) pe sbloranemento
di covarianze(11)
Var(qyt)
= 2Var(yt) + Var(t)
0 = 2 0 + 2
0 = 2/1-2
(4) Var(yt)=Var(tyt-1 + t + et+1)
= 2Var(yt-1) + Var(t) + 2Var(t-1)
+2 Cov(yt, t) + 2 Cov(yt-1, t-2
+ 2 Cov(t t-1)
Abbrtuamo che: Var(yt) = Var(0 t) = 0
Var(t) = 2
Cov(yt, 1) = 0
Cov(yt-1, t-2) = Cov(yt, t) = E(yt t) = 2 puntos
Cov(t, t-1) = 0
0 = 20 + 2 + 2+ 2 Cov( 2=> 0
= 1 + 2 + 2/1 2
Area #2
d) E[RT1|IT] = E[εT1 + θεt1IT]
= E[εT1| IT] + θE[εt1IT]
= θεt = 0.2 · 0.01
E[RT2| IT] = E[εT1 + θεt1IT] = 0
b) E[( RT2 - RTt1) IT] = E[(εtT1 + θεTt1 - θεt)2 | IT]
= E[ εtT1| IT] = σ2 = 0.025
E[ ( RT2 - RT2t1)2 | IT] = E[ ( εtT1 + θεtt1)2 | IT]
= E[ ε2T1 | IT ] + θ E[ ε2Tt1 | IT] + 2θ E[ εT2 εtt1 | IT ]
= (1 + θ)2 σ2 = (1 + 0.2)2 · 0.025
c) η̂1 = δ1 / xo → η̂1 = δ̂1 / xo = 0 / 1 + θ - 0.2 / 1 + 0.22
η̂2 = δ̂2 / xo → η̂2 = δ̂2 / xo - 0 / (1 + θ)2 = 0
5
c) a Var(t) = a = ...
a 1 – φ1
a d)
a r1 = φ1 y0 ...
a2 = φ2 y0 ...
ARMA 6
# 6
y yt = φ0 + φ1 yt-1 + εt + θ1 εt-1 + θ2 εt-2
E [rt+1 | It ] = E [φ0 + φ1 rt + εt+1 + θ1εt+1 + θ2 εt-1 | It ]
= 1.03 + 0.2 1.18, 3 + 0.4, 2.0 - 0.25 (-2.3) = ...
E [rt+2 | It ] = E (φ0 + φ1 rt+1 + εt+2 + θ1 εt+1 + θ2 εt | It)
= φ0 + φ1 E [rt+1 | It ] + θ2 εt
= 1.03 + 0.2 E [rt+1 | It ] - 0.25 (2.6)
dal punto precedinato