vuoi
o PayPal
tutte le volte che vuoi
Z
−
ψ = ψ ρ ds
0 0
since ψ does not influence the determination of the shear center, we will assume ψ = 0
0 0
We calculate the distances with sign from G to s , s and s .
1 2 3
ρ < 0 (s is clockwise from G)
1 1
ρ < 0 (s is clockwise from G)
2 2
ρ > 0 (s is counterclockwise from G)
3 3
−e −32.72
ρ = = mm
1 G
−75
ρ = mm
2
ρ = 75 mm
3 s
Z 1
− ·
ψ = ρ ds = 32.72 s
1 1 1
0 s
Z 2
· − ·
ψ = 32.72 75 ρ ds = 2453.71 + 75 s
2 2 2
0 s
Z 3
· − −2453.71 − ·
ψ = 32.72 (−75) ρ ds = 75 s
3 3 3
0
y = s
s1 1
y = 75
s2 −75
y =
s3 235 160 160
Z Z Z
Z · · · · · · · · ·
ψ y b ds + ψ y b ds + ψ y b ds
− · ·
ψ y dA 1 s1 2 1 2 s2 1 2 3 s3 1 3
s −235 0 0
A −
x = = =
C I I
x x
235 160
Z
−1 Z
· · · · · · · · ·
= (32.72 s ) s 8 ds + (2453.71 + 75 s ) 75 8 ds +
1 1 1 2 2
6
·
83.27 10 −235 0
160
Z − · · · ·ds
+ (−2453.71 75 s ) (−75) =
3 3
0
235 160
Z
−1 Z
· · · · · ·
= 261.73 s ds + 2 (1472225.06 + 45000 s ) ds =
1 1 2 2
6
·
83.27 10 −235 0
−1 −3887.57
6 6
· · · · −46.69
= 2264.45 10 + 2 811.56 10 = = mm
6
·
83.27 10 83.27
2
−x − −
e = e = 46.89 32.72 = 13.97 mm
C C G
Now let’s calculate the warping function about the shear center to calculate the warping rigidity.
s
Z
∗ ∗ ∗
−
ψ = ψ ρ ds
0 0 →
− →
− →
−
We calculate the distances with sign from C to s , s and s .
1 2 3
∗
ρ > 0 (s is counterclockwise from C)
1
1
∗
ρ < 0 (s is clockwise from C)
2
2
∗
ρ > 0 (s is counterclockwise from C)
3
3
∗
ρ = e = 13.97 mm
C
1
∗ −75
ρ = mm
2
∗
ρ = 75 mm
3 s
Z 1
∗ ∗ ∗ ∗
− − ·
ψ = ψ ρ ds = ψ 13.97 s
1
1 0 1 0
0 s
Z 2
∗ ∗ ∗ ∗
− · − − ·
ψ = ψ 13.97 75 ρ ds = ψ 1047.75 + 75 s
2
2 0 2 0
0 s
Z 3
∗ ∗ ∗ ∗
− · − − ·
ψ = ψ 13.97 (−75) ρ ds = ψ + 1047.75 75 s
3
3 0 3 0
0
∗ ∗
To find ψ , the average value of ψ must be zero on the whole area.
0 235 160 160
Z Z Z Z
∗ ∗ ∗ ∗
⇒ · · · · · · ⇒
ψ dA = 0 ψ b ds + ψ b ds + ψ b ds = 0
2 1 1 2 1 3
1 2 3
−235
A 0 0
235 160 160
Z Z Z
∗ ∗ ∗
− · · · − · · · − · · · ⇒
(ψ 13.97 s ) 8 ds + (ψ 1047.75 + 75 s ) 8 ds + (ψ + 1047.75 75 s ) 8 ds = 0
1 1 2 2 3 3
0 0 0
−235 0 0 ∗ 2
∗ ∗ ∗ ∗
· · · − ⇒ · ⇒ ψ = 0 mm
3760 ψ + (1280 ψ + 6338880) + (1280 ψ 6338880) = 0 6320 ψ = 0 0
0 0 0
0 ∗
Now we can recover the expression of ψ .
∗ 2
−13.97 ·
ψ = s mm
1
1
∗ 2
−1047.82 ·
ψ = + 75 s mm
2
2 3
∗ 2
− ·
ψ = 1047.82 75 s mm
3
3
Warping rigidity. 235 160 160
Z Z Z Z
∗2 ∗2 ∗2 ∗2
· · · · · ·
Γ= ψ dA = ψ b ds + ψ b ds + ψ b ds =
2 1 1 2 1 3
1 2 3
−235
A 0 0
235 160 160
Z Z Z
2 2 2
· · · · · · − · · ·
= (−13.97 s ) 8 ds + (−1047.82 + 75 s ) 8 ds + (1047.82 75 s ) 8 ds =
1 1 2 2 3 3
−235 0 0
−7 6
10 10 11 6 ·
· · · · 1.07 10 m
= 1.35 10 + 2 4.675 10 = 1.07 10 mm =
Torsional stiffness.
1 −7
3 3 5 4
· · · ·
J = 2 156 8 + 470 8 = 133461 mm = 1.33 10 m
3
Young and Shear modulus. 6
·
210 10 kPa
E = 210000 MPa = 6
·
E 210 10 6
·
G = 80.769 10 kPa
= =
·
2 (1 + ν) 2 (1 + 0.3)
DIFFERENTIAL EQUATION.
The structure behavior is governed by:
00
IV −
EΓθ GJθ = m , and doing
t
r
r −7 4
·
GJ 1.33 10 m −1
= = 0.69 m , remains:
α = −7 6
· ·
EΓ 2.6 1.07 10 m
m
00 t
IV 2
−
θ α θ = EΓ
where: ·
1.5 kN m/m · · ·
m = z (m) = 0.25 z kN m/m , and the equation remains:
t 6m 1
00
IV 2
−
θ α θ = z
4EΓ
the complete solution is in the form:
θ = θ + θ
h p
where θ is a particular solution of the inhomogeneous equation, and θ is the solution of the homogeneous
p h
equation. 4
PARTICULAR SOLUTION.
1
00
IV 2
−
θ α θ = z
p p 4EΓ
we will look for a solution of the form:
3 4 3
θ = z (az + b) = az + bz
p 00 000
0 3 2 2 IV
θ = 4az + 3bz , θ = 12az + 6bz , θ = 24az + 6b , θ = 24a
p p p p
replacing: 24a = 0 ( a =0
1 2
−12α a = 0
2 2 −1
−1
⇒ ⇒
− z
24a α (12az + 6bz) = 1 b = =
4EΓ 2
−6α b = 2
24α EΓ 24GJ
4EΓ
and the particular solution will be:
−1 3
θ = z
p 24GJ
HOMOGENEOUS SOLUTION.
00
2
IV − = 0
α θ
θ h
h D = α
4 2 2 2 −α
− → − → D =
(D α D )θ = 0 D (D + α)(D α) = 0
h D = 0 (double root)
then the homogeneous solution will be of the form:
−αz −αz
αz 0z αz
θ = Ae + Be + (Cz + D)e = Ae + Be + Cz + D
h
COMPLETE SOLUTION
The complete solution will be θ = θ + θ , that is:
h p
1
−αz
αz 3
−
θ = Ae + Be + Cz + D z
24GJ
the boundary conditions given by the problem, since the supports do not allow any rotation and there are no
external bimoments applied at the ends, are:
00 00
θ(0) = 0 , θ (0) = 0 , θ(L) = 0 , θ (L) = 0
deriving θ: 3
0 −αz
αz 2
− −
θ = αAe αBe + C z
24GJ
6
00 −αz
2 αz 2 −
θ = α Ae + α Be z
24GJ
and therefore: 5
⇒
θ(0) = 0 A + B + D =0
00 2 2
⇒ ⇒
θ (0) = 0 α A + α B = 0 A + B =0
1
−αL −0.69·6
αL 3 0.69·6 3
⇒ − ⇒ · − · ⇒
θ(L) = 0 Ae + Be + CL + D L = 0 Ae + Be + C 6 + D 0.039 6 = 0
24GJ
⇒ −
62.8A + 0.016B + 6C + D 8.4 = 0
6
00 −αL −0.69·6
2 αL 2 2 0.69·6
⇒ − ⇒ − · ⇒
θ (L) = 0 α Ae + α Be L = 0 0.69 Ae + 0.69 0.023 6 = 0
24GJ
⇒ −
29.9A + 0.007B 0.14 = 0
and solving: −0.0044
A = 0.0044 B = C = 0.09 D =0
and the complete solution is:
−0.69z
0.69z 3
− −
θ = 0.0045 e 0.0045 e 0.0038z + 0.09z
0 −0.69z −1
0.69z 2
−
θ = 0.0031 e + 0.0031 e 0.011z + 0.09 m
00 −0.69z −2
0.69z − −
θ = 0.0022 e 0.0022 e 0.023z m
000 −0.69z −3
0.69z −
θ = 0.0015 e + 0.0015 e 0.023 m
VLASOV AND SAINT VENANT TORSIONAL MOMENTS, BIMOMENT.
6
The Saint Venant torsional moment is:
0
M = GJθ
t1 2
· ·
G J = 10.78 kN m −0.69z
0.69z 2
· − ·
M = 10.78 0.0031 e + 0.0031 e 0.011z + 0.09 kN m
t1
The Wagner-Vlasov torsional moment is:
000
−EΓθ
M =
t2 4
· ·
E Γ = 22.47 kN m −0.69z
0.69z
−22.47 · − ·
M = 0.0015 e + 0.0015 e 0.023 kN m
t2
The total torsional moment, or torque, can be obtained as the sum of the two preceding:
2
− ·
M = M + M = 1.5 0.125 z kN m
t t1 t2 7