vuoi
o PayPal
tutte le volte che vuoi
Z 1
− −71.34 ·
Ψ = ρ ds = s
1 1 1
0 √ s
Z 2
−71.34 · − −10088.86 − ·
Ψ = d 2 ρ ds = 30.89 s
2 2 2
0 s
Z 3 −14413.27 − ·
−10088.88 − · − ρ ds = 71.34 s
Ψ = 30.89 h 3 3
3 0
h o
− − · −170 ·
x = d + s sin(45 ) = + 0.71 s
s1 1 1
2
h −70
− + s = + s
x = 2 2
s2 2
h o
· ·
x = + s sin(45 ) = 70 + 0.71 s
s3 3 3
2 Z
− · ·
Ψ y dA
s
A
x = =0
C I x
Z · ·
Ψ x dA
s
A
y = =
C I
y
√ √
d 2 h d 2
Z Z Z
· · · · · · · · ·
Ψ x b ds + Ψ x b ds + Ψ x b ds
1 s1 1 1 2 s2 2 2 3 s3 1 3
0 0 0
= =
I
x
√
"Z d 2
1 · · · · ·
·
= (−71.34 s ) (−170 + 0.71 s ) 4 ds +
1 1 1
6
·
18.378 10 0 h
Z − · · · ·
+ (−10088.86 30.89 s ) (−70 + s ) 5 ds +
2 2 2
0 √ #
d 2
Z − · · · · ·
+ (−14413.27 71.34 s ) (70 + 0.71 s ) 4 ds =
3 3 3
0
√
"Z d 2
1 21
· · − · ·
= (48510.55 s 201.78 s ) ds +
1 1
6
·
18.38 10 0 2
h
Z 22
· − · ·
+ (−154.44 s 39633.29 s + 3531102.16) ds +
2 2
0 √ #
d 2
Z 23
· − · − ·
+ (−201.78 s 60741.82 s 4035716.15) ds =
3 3
0 √ √
1 h 2 3
· · − ·
24255.27 (d 2) 67.26 (d 2) +
= 6
·
18.38 10 3 2
−51.48 · − · ·
h 19816.65 h + 3531102.16 h +
√ √
√ i
3 2
− · − ·
−67.26 · 2) 30370.91 (d 2) 4035716.15 d 2 =
(d
1 6 6 6
· · −60.34
− · − ·
= 294.87 10 = mm
35.32 10 1368.39 10
6
·
18.378 10
−y − −
e = e = 60.34 30.89 = 29.45 mm
C C G
Now let’s calculate the warping function about the shear center to calculate the warping rigidity.
s
Z
∗ ∗
−
Ψ = Ψ ρ ds
0 0 h
∗ ∗ o o
· − ·
ρ > 0 ; ρ = cos(45 ) e sin(45 ) = 28.68 mm
C
1 1 2
∗ ∗ −e −29.45
ρ < 0 ; ρ = = mm
C
2 2
∗ ∗ ∗
ρ > 0 ; ρ = ρ = 28.68 mm
3 3 1
s
Z 1
∗ ∗
− − ·
Ψ = Ψ ρ ds = Ψ 28.68 s
0 0 1
1 1
0 √ s
Z 2 ∗
∗ − − ·
− · 2 ρ ds = Ψ 4055.31 + 29.45 s
Ψ = Ψ 28.68 d 0 2
0 2
2 0 s
Z 3
∗ ∗
− · − − ·
Ψ = Ψ 4055.31 + 29.45 h ρ ds = Ψ + 67.27 28.68 s
0 0 3
3 3
0
∗
To find Ψ , the average value of Ψ must be zero on the whole area.
0 √ √
d 2 h d 2
Z Z Z Z
∗ ∗ ∗ ∗
⇒ · · · · · · ⇒
Ψ dA = 0 Ψ b ds + Ψ b ds + Ψ b ds = 0
1 1 2 2 1 3
1 2 3
A 0 0 0
√ √
d 2 h d 2
Z Z
Z −28.68·s −4055.31+29.45·s ⇒
(Ψ )·4·ds + (Ψ )·5·ds + (Ψ +67.27−28.68·s )·4·ds = 0
0 1 1 0 2 2 0 3 3
0 0 0
3
√ √ √ √ √
2 2 2
−57.35·(d −20276.53·h+4·d −57.35·(d ⇒
4·d 2·Ψ 2) +5·h·Ψ +73.62·h 2·Ψ 2) +269.06·d 2 = 0
0 0 0
· − · − · − ⇒
565.69 Ψ 1147013.77 + 700 Ψ 1395814.25 + 565.69 Ψ 1108962.73 = 0
0 0 0
2
· − ⇒
1831.37 Ψ 3651790.75 = 0 Ψ = 1994.02 mm
0 0
∗
Now we can recover the expression of Ψ .
∗ − ·
Ψ = 1994.02 28.68 s
1
1
∗ − · · −
Ψ = 1994.02 4055.31 + 29.45 s = 29.45 s 2061.29
2 2
2
∗ − · − ·
Ψ = 1994.02 + 67.27 28.68 s = 2061.29 28.68 s
3 3
3
Warping rigidity. √
√ 2 h d 2
d Z Z
Z Z ∗2 ∗2 ∗2
∗2 · · · · · ·
Ψ b ds + Ψ b ds + Ψ b ds =
Γ= Ψ dA = 1 1 2 2 1 3
1 2 3
0 0 0
A √ √
d 2 2
h d
Z Z Z
2 2
2
·b ·ds ·b ·ds
−2061.29) ·b ·ds
= (1994.02−28.68·s ) + (2061.29−28.68·s ) =
(29.45·s +
1 1 1 3 1 3
2 2 2
0 0
0
√ √
√ 3 2 6 3 2 6
− · · · · − · · ·
· 2) 228716.88 (d 2) + 15.9 10 d 2 + 1445.20 h 303492.78 h + 21.24 10 h +
= 1096.37 (d √ √
√ 3 2 6
− · · ·
· 2) 236432.31 (d 2) + 17 10 d 2 =
+1096.37 (d 6
6 6
· ·
= 775.89 10 + 991.41 10 + 775.89 = 2543.19 mm
Torsional stiffness.
√
1
31 32 4
· · ·
J = 2 d 2 b + h b = 11867.31 mm
3
Young and Shear modulus. 2
E = 210000 MPa = 210000 N/mm
E 210000 2
G = = = 80769.23 N/mm
·
2 (1 + ν) 2 (1 + 0.3)
DIFFERENTIAL EQUATION.
The structure behavior is governed by:
00
IV −
EΓθ GJθ = m , and doing
t
r
r 4
GJ 11867.31 mm −1
α = = = 0.00133968 mm , remains:
6
·
EΓ 2.6 2543.19 mm 4
m
00 t
IV 2
−
θ α θ = EΓ
where: ·
1200 N m/m 4
· · ·
m = z (mm) = z N mm/mm , and the equation remains:
t 4500 mm 15
4
00
IV 2
−
θ α θ = z
15EΓ
the complete solution is in the form:
θ = θ + θ
h p
where θ is a particular solution of the inhomogeneous equation, and θ is the solution of the homogeneous
p h
equation.
PARTICULAR SOLUTION.
4
00
2
IV − α θ = z
θ p p 15EΓ
we will look for a solution of the form:
3 4 3
θ = z (az + b) = az + bz
p 000
00
0 IV
2
3 2 = 24a
= 24az + 6b , θ
= 12az + 6bz , θ
= 4az + 3bz , θ
θ p
p
p
p
replacing: 24a = 0 ( a =0
4 2
−12α a = 0
2 2 −2
− ⇒
⇒
24a α (12az + 6bz) = z 4 b =
15EΓ 2
−6α b = 2
45α EΓ
15EΓ
and the particular solution will be:
−2 3
θ = z
p 2
45α EΓ
HOMOGENEOUS SOLUTION.
00
IV 2
−
θ α θ = 0
h h D = α
4 2 2 2 −α
− → − → D =
(D α D )θ = 0 D (D + α)(D α) = 0
h D = 0 (double root)
then the homogeneous solution will be of the form:
−αz −αz
αz 0z αz
θ = Ae + Be + (Cz + D)e = Ae + Be + Cz + D
h
COMPLETE SOLUTION
The complete solution will be θ = θ + θ , that is:
h p 5
2
−αz
αz 3
−
θ = Ae + Be + Cz + D z
2
45α EΓ
the boundary conditions given by the problem, since the supports do not allow any rotation and there are no
external bimoments applied at the ends, are:
00 00
θ(0) = 0 , θ (0) = 0 , θ(L) = 0 , θ (L) = 0
deriving θ: 6
0 −αz
αz 2
− − z
θ = αAe αBe + C 2
45α EΓ
12
00 −αz
2 αz 2 −
θ = α Ae + α Be z
2
45α EΓ
and therefore:
⇒
θ(0) = 0 A + B + D =0
00 2 2
⇒ ⇒
θ (0) = 0 α A + α B = 0 A + B =0
2
−αL 3
αL ⇒
⇒ − L = 0
θ(L) = 0 Ae + Be + CL + D 2
45α EΓ
⇒ 415.1127A + 0.0024B + 4500 C + D = 4.2253
12
00 −αL
2 αL 2
⇒ − ⇒
θ (L) = 0 α Ae + α Be L =0
2
45α EΓ
⇒ 745.018A + 0.00432B = 1.2519
and solving: −4
−0.00168 ·
A = 0.00168 B = C = 7.8394 10 D =0
and the complete solution is: −0.00134z −4 −11
0.00134z 3
− · − ·
θ = 0.00168e 0.00168e + 7.8394 10 z 4.6368 10 z
6
VLASOV AND SAINT VENANT TORSIONAL MOMENTS, BIMOMENT.
0 −6 −6 −0.00134·z −10 −
0.00134z 2
· · · · − · · ·
θ = 2.251 10 e + 2.251 10 e 1.391 10 z + 7.839 10 4
00 −9 −9 −0.00134·z −10
0.00134z
· · − · · − · ·
θ = 3.0159 10 e 3.0159 10 e 2.782 10 z
000 −12 −12 −0.00134·z −10
0.00134z
· · · · − ·
θ = 4.04 10 e + 4.04 10 e 2.782 10
The Saint Venant torsional moment is:
0 −0.00134·z
0.00134·z 2
· · − ·
M = GJθ = 2157.83 e + 2157.83 e 0.133 z + 751417.38
t1
The Wagner-Vlasov torsional moment is:
000 −0.00134·z
0.00134·z
−EΓθ −2157.83 · − ·
M = = e 2157.83 e + 148582.62
t2
The total torsional moment, or torque, can be obtained as the sum of the two preceding:
2
−0.1333z
M = M + M = + 900000
t t1 t2
The bimoment is:
00 −0.00134·z
0.00134·z
· − · − ·
B = EΓθ = 1610708.716 e 1610