vuoi
o PayPal
tutte le volte che vuoi
Linear Transport Equations
Pure Transport
ut + c ux = 0 → u(x,t) = g(x - ct) u(x,0) = g(x)
Transport with External Source
ut + c ux = f(x,t) → u(x,t) = g(x - ct) + ∫0t f(x - c(t-s), s) ds u(x,0) = g(x)
Transport with Decay
ut + c ux + δu = 0 → u(x,t) = g(x - ct) e-δt u(x,0) = g(x)
Equation of the Characteristics
x = x0 + ct
- Identify type of equation, velocity c, initial condition
- Write the eq. of the characteristics
- Write the solution
Heat Equation
- ut = D uxx π2 u(x,0) = g(x) u(0,t) = βin(t) u(L,t) = β2(t)
x ∈ [0,L], t ∈ [0,T]
Separation of variables: U(x,t) = V(x) W(t) ut = V(x) W'(t), uxx = V''(x) W(t), ut - D uxx = 0 → V(x) W'(t) - D V''(x) W(t) = 0 V(x) W'(t) = D V''(x) W(t) Dividing by V(x) W(t): W'(t) / DW(t) = V''(x) / V(x) = -λ
- V''(x) - λV(x) = 0 if βin(t), β2(t) = 0
- Dirichlet BCs → u(0,t) = βin(t) = V(0) W(t) → V(0) = 0
- ∀t∈(0,T) → u(1,t) = β2(t) = V(L) W(t) → V(L) = 0
V''(x) - λV(x) = 0 V(0) = 0 V(L) = 0 Eigenvalue: λk = - (kπ/L)2 k ≥ 1
Eigenfunctions: Vk(x) = Ck sin( (kπ/L) x )
- W'(t) - λDW(t) = 0 Wk(t) = Ck Θ-λ(k2/L)2 t
→ U(x,t) = ∑k≥1 Ck sin( (kπ/L) x ) . e -(kπ/L)2 t
We have to impose the initial condition \( u(x,0)=g(x) \)
\( u(x,0) = \sum_{k=1}^{\infty} C_k \sin\left(\frac{k\pi}{L} x\right) = g(x) \) Fourier expansion of \( g(x) \)
(2) Neumann BCs
- \( Cu_t - Du_{xx} = 0 \)
- \( U(x,0) = g(x) \)
- \( U(0,t) = 0 \)
- \( U_x(L,t) = 0 \)
The procedure is the same of the previous case but it is different in \( V_k(x) \):
- \( V''(x) - \lambda V(x) = 0 \)
- \( V'(0) = 2\ln(i) \)
- \( V'(L) = 2\ln(g) \)
Eigenvalues \( \lambda=' \)
\( \lambda = \left(\frac{k\pi}{L}\right)^2 \)
Eigenfunctions
- \( V_0(x) = \text{const} \)
- \( V_k(x) = C_k \cos\left(\frac{k\pi}{L} x\right) \)
So the solution is:
\( U(x,t) = \sum_{k=0}^{\infty} C_k \cos\left(\frac{k\pi}{L} x\right) e^{-\left(\frac{k\pi}{L}\right)^2 t} = C_0 + \sum_{k=1}^{\infty} C_k \cos\left(\frac{k\pi}{L} x\right) e^{-\left(\frac{k\pi}{L}\right)^2 t} \)
Then impose the initial condition + Fourier expansion of \( g(x) \)
Fourier series theory
\( \tilde{g}(x)=\frac{a_0}{2}+\sum_{k=1}^{\infty}[a_k\cos(kix)+b_k\sin(m(k_i x))] \)
\( a_k = \frac{2}{\pi} \int_{O}^{J} f(x)\cos(kx)dx \quad b_k = \frac{2}{J} \int_{O}^{J} f(x)\sin(k_i x)dx \)
If \( f(x) \) is a T-periodic function
\( f(x) = \sum_{k=0}^{\infty} \left[a_k\cos\left(\frac{2\pi}{T} kx\right)+b_k\sin\left(\frac{2\pi}{T} kx\right)\right] \)
\( a_k = \frac{2}{T} \int_{-T/2}^{T/2} f(x)\cos\left(\frac{2\pi}{T} kx\right)dx \quad b_k = \frac{2}{T} \int_{-T/2}^{T/2} f(x)\sin\left(\frac{2\pi}{T} kx\right)dx \)
Even \( f(x): \tilde{g}(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(k_i x) \quad a_k = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos(k_i x) dx \)
Odd \( f(x): \tilde{g}(x) = \sum_{k=1}^{\infty} b_k \sin(k_i x) \quad b_k = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin(k_i x) dx \)
Dirichlet = odd expansion; Neumann = even expansion.
HEAT EQUATION - QUALITATIVE STUDY
- Weak Maximum Principle: \( U \epsilon C^{2,1}(\overline{QT})\subset C(\overline{QT}) \) be a solution of
- \( U_t - U_{xx} = f \quad (x,t) \epsilon (Q,L)\times(0,T) \) with \( f \leq 0 \), \( M_{ex}U = \max_{QT} U \)
- With \( f \geq 0 \): \( \min_{QT} U = \min_{SPQT}U \)
- If \( f = 0 \) both
The general solution of
Apply BCs: if Dirichlet
then apply superposition principle:
Impose the non-homogeneous BC, with Fourier expansion (if necessary)
Two-Dimensional Heat Equation
Separating variables
And then continue as "defense in a cube"
Pay attention that
One-Dimensional Wave Equation
Well-posed problem:
Initial profile
Initial velocity
If :
Global Cauchy problem - d'Alembert formula
If is bounded, BCs are needed (separation of variables method)
The general solution of
Pay attention when