vuoi
o PayPal
tutte le volte che vuoi
24 BESSEL FUNCTIONS
BESSEL’S DIFFERENTIAL EQUATION
24.1
x2y'' + xy' + (x2−n2)y = 0 n ≥ 0
Solutions of this equation are called Bessel functions of order n.
BESSEL FUNCTIONS OF THE FIRST KIND OF ORDER n
24.2
Jn(x) = (x/2)n/(n!) [ 1 − x2/2(2n + 2) + x4/2 · 4(2n + 2)(2n + 4) − ... ]
= ∑ (−1)k(x/2)2k/k! Γ(n + k + 1)
24.3
J−n(x) = (x/2)n/(−n)! [ 1 − x2/2(2 − 2n) + x4/2 · 4(2 − 2n)(4 − 2n) − ... ]
= ∑ (−1)k(x/2)2k−n/k!(−n + k)
24.4
J−n(x) = (−1)n Jn(x) n = 0, 1, 2, ...
If n ≠ 0, 1, 2, ..., Jn(x) and J−n(x) are linearly independent.
If n = 0, 1, 2, ..., Jn(x) is bounded at x = 0 while J−n(x) is unbounded.
For n = 0, 1 we have
24.5
J0(x) = 1 − x2/22 + x4/2242 + ...
24.6
J1(x) = x/2 − x3/2 · 22 + x5/2 · 2 · 62 + ...
24.7
J0'(x) = −J1(x)
BESSEL FUNCTIONS OF THE SECOND KIND OF ORDER n
24.8
Yn(x) = ∫ Jn(xt) cos xπ − Jn(x)/sin xπ n ≠ 0, 1, 2, ...
= lim Jn(x) cos pπ − J−n(x)/sin pπ n = 0, 1, 2
This is also called Weber’s function or Neumann’s function [also denoted by Nn(x)].
136
BESSEL FUNCTIONS
For x = 0, 1, 2, ..., L'Hospital's rule yields
24.9
Yn(x) = 2/π(ln (x/2) + γ)yn(x) - πΣk-0n-1((n-k-1)!)k! ((x/2)2k-n
- 1/π∑k=0∞(-1)k(x
/2)2k+n : k!(n+k)!
where γ =.5772156... is Euler's constant
24.10
Φ(0) = 1 - 1/2 1 Φ(0) = 1
For n = 0,
24.11
Y0(x) = 2/π (ln (x/2) + γ)J0(x) + 2/π[x2 - x4/2⋅2 + x6/3⋅3 +24⋅64(1 + 1/2 + 1/3) - ...]
24.12
Y-n(x) = (-1)nYn(x)
n = 0, 1, 2, ...
For any value n >(not less than) 0, Jn(x) is bounded at x=0 while Yn(x) is unbounded.
GENERAL SOLUTION OF BESSEL'S DIFFERENTIAL EQUATION
24.13
y = AJn(x) + BJ-n(x)
x not = 0, 1, 2, ...
24.14
y = Ajn(x) + Byn(x)
all n
24.15
y = AJn(x) + Bn(x)
∫ xn J-n(xc)
all n
where A and B are arbitrary constants.
GENERATING FUNCTION FOR Jn(x)
24.16
ex(t-(1/t))/2 = ∑n=-∞∞ Jn(x)tn
RECURRENCE FORMULAS FOR BESSEL FUNCTIONS
24.17
Jn+1(x) = 2n/x Jn(x)
Jn-1(x)
24.18
J'n(x) = 1/2[Jn-1(x) - Jn+1(x)]
24.19
xJ'n(x) = xJn-n(x) - nJn(x)
24.20
xJ'n(x) = nJn(x) - xJn+1(x)
24.21
d/dx(xnJn(x)) = xnJn-1(x)
24.22
d/dx(x-nJ-n(x)) = -x-nJn+1(x)
The functions Yn(x) satisfy identical relations.
BESSEL FUNCTIONS
DIFFERENTIAL EQUATION FOR Ber, Bei, Ker, Kei FUNCTIONS
24.72
x2y′′ + xy′ - (ix2 + n2)y = 0
The general solution of this equation is
24.73
y = A{Bern(x) + i Bein(x)} + B{Kern(x) + i Kein(x)}
GRAPHS OF BESSEL FUNCTIONS
Fig. 24-1
Fig. 24-2
Fig. 24-3
Fig. 24-4
Fig. 24-5
Fig. 24-6
25 LEGENDRE FUNCTIONS
LEGENDRE'S DIFFERENTIAL EQUATION
25.1
(1 - x2)y" - 2xy' + n(n + 1)y = 0
Solutions of this equation are called Legendre functions of order n.
LEGENDRE POLYNOMIALS
If n = 0, 1, 2, ..., solutions of 25.1 are Legendre polynomials Pn(x) given by Rodrigues's formula
25.2
Pn(x) = 1/2nn! dn/dxn(x2 - 1)n
SPECIAL LEGENDRE POLYNOMIALS
25.3 P0(x) = 1
25.4 P1(x) = x
25.5 P2(x) = 1/2(3x2 - 1)
25.6 P3(x) = 1/2(5x3 - 3x)
25.7 P4(x) = 1/8(35x4 - 30x2 + 3)
25.8 P5(x) = 1/8(63x5 - 70x3 + 15x)
25.9 P6(x) = 1/16(231x6 - 315x4 + 105x2 - 5)
25.10 P7(x) = 1/16(429x7 - 693x5 + 315x3 - 35x)
LEGENDRE POLYNOMIALS IN TERMS OF θ WHERE x = cos θ
25.11 P0(cos θ) = 1
25.12 P1(cos θ) = cos θ
25.13 P2(cos θ) = 1/2(3 cos2 θ - 1)
25.14 P3(cos θ) = 3/2(5 cos θ - 3 cos3 θ)
25.15 P4(cos θ) = 1/8(9 + 20 cos2 θ - 35 cos4 θ)
25.16 P5(cos θ) = 1/128(30 cos θ + 8 - 35 cos3 θ + 63 cos5 θ)
25.17 P6(cos θ) = 1/32(5θ + 105 cos2 θ + 126 cos4 θ + 231 cos6 θ)
25.18 P7(cos θ) = 1/512(1715 cos θ + 189 cos θ + 231 cos θ + 429 cos θ
GENERATING FUNCTION FOR LEGENDRE POLYNOMIALS
25.19
1/√(1 - 2tx + t2) = ∞∑n=0 Pn(x)tn
146