Anteprima
Vedrai una selezione di 4 pagine su 13
Bessel & Legendre function Pag. 1 Bessel & Legendre function Pag. 2
Anteprima di 4 pagg. su 13.
Scarica il documento per vederlo tutto.
Bessel & Legendre function Pag. 6
Anteprima di 4 pagg. su 13.
Scarica il documento per vederlo tutto.
Bessel & Legendre function Pag. 11
1 su 13
D/illustrazione/soddisfatti o rimborsati
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Estratto del documento

24 BESSEL FUNCTIONS

BESSEL’S DIFFERENTIAL EQUATION

24.1

x2y'' + xy' + (x2−n2)y = 0   n ≥ 0

Solutions of this equation are called Bessel functions of order n.

BESSEL FUNCTIONS OF THE FIRST KIND OF ORDER n

24.2

Jn(x) = (x/2)n/(n!) [ 1 − x2/2(2n + 2) + x4/2 · 4(2n + 2)(2n + 4) − ... ]

= ∑ (−1)k(x/2)2k/k! Γ(n + k + 1)

24.3

J−n(x) = (x/2)n/(−n)! [ 1 − x2/2(2 − 2n) + x4/2 · 4(2 − 2n)(4 − 2n) − ... ]

= ∑ (−1)k(x/2)2k−n/k!(−n + k)

24.4

J−n(x) = (−1)n Jn(x)   n = 0, 1, 2, ...

If n ≠ 0, 1, 2, ..., Jn(x) and J−n(x) are linearly independent.

If n = 0, 1, 2, ..., Jn(x) is bounded at x = 0 while J−n(x) is unbounded.

For n = 0, 1 we have

24.5

J0(x) = 1 − x2/22 + x4/2242 + ...

24.6

J1(x) = x/2x3/2 · 22 + x5/2 · 2 · 62 + ...

24.7

J0'(x) = −J1(x)

BESSEL FUNCTIONS OF THE SECOND KIND OF ORDER n

24.8

Yn(x) = ∫ Jn(xt) cos xπ − Jn(x)/sin xπ n ≠ 0, 1, 2, ...

= lim Jn(x) cos pπ − J−n(x)/sin pπ n = 0, 1, 2

This is also called Weber’s function or Neumann’s function [also denoted by Nn(x)].

136

BESSEL FUNCTIONS

For x = 0, 1, 2, ..., L'Hospital's rule yields

24.9

Yn(x) = 2/π(ln (x/2) + γ)yn(x) - πΣk-0n-1((n-k-1)!)k! ((x/2)2k-n

- 1/πk=0(-1)k(x

/2)2k+n : k!(n+k)!

where γ =.5772156... is Euler's constant

24.10

Φ(0) = 1 - 1/2 1 Φ(0) = 1

For n = 0,

24.11

Y0(x) = 2/π (ln (x/2) + γ)J0(x) + 2/π[x2 - x4/2⋅2 + x6/3⋅3 +24⋅64(1 + 1/2 + 1/3) - ...]

24.12

Y-n(x) = (-1)nYn(x)

n = 0, 1, 2, ...

For any value n >(not less than) 0, Jn(x) is bounded at x=0 while Yn(x) is unbounded.

GENERAL SOLUTION OF BESSEL'S DIFFERENTIAL EQUATION

24.13

y = AJn(x) + BJ-n(x)

x not = 0, 1, 2, ...

24.14

y = Ajn(x) + Byn(x)

all n

24.15

y = AJn(x) + Bn(x)

∫ xn J-n(xc)

all n

where A and B are arbitrary constants.

GENERATING FUNCTION FOR Jn(x)

24.16

ex(t-(1/t))/2 = ∑n=-∞ Jn(x)tn

RECURRENCE FORMULAS FOR BESSEL FUNCTIONS

24.17

Jn+1(x) = 2n/x Jn(x)

Jn-1(x)

24.18

J'n(x) = 1/2[Jn-1(x) - Jn+1(x)]

24.19

xJ'n(x) = xJn-n(x) - nJn(x)

24.20

xJ'n(x) = nJn(x) - xJn+1(x)

24.21

d/dx(xnJn(x)) = xnJn-1(x)

24.22

d/dx(x-nJ-n(x)) = -x-nJn+1(x)

The functions Yn(x) satisfy identical relations.

BESSEL FUNCTIONS

DIFFERENTIAL EQUATION FOR Ber, Bei, Ker, Kei FUNCTIONS

24.72

x2y′′ + xy′ - (ix2 + n2)y = 0

The general solution of this equation is

24.73

y = A{Bern(x) + i Bein(x)} + B{Kern(x) + i Kein(x)}

GRAPHS OF BESSEL FUNCTIONS

Fig. 24-1

Fig. 24-2

Fig. 24-3

Fig. 24-4

Fig. 24-5

Fig. 24-6

25 LEGENDRE FUNCTIONS

LEGENDRE'S DIFFERENTIAL EQUATION

25.1

(1 - x2)y" - 2xy' + n(n + 1)y = 0

Solutions of this equation are called Legendre functions of order n.

LEGENDRE POLYNOMIALS

If n = 0, 1, 2, ..., solutions of 25.1 are Legendre polynomials Pn(x) given by Rodrigues's formula

25.2

Pn(x) = 1/2nn! dn/dxn(x2 - 1)n

SPECIAL LEGENDRE POLYNOMIALS

25.3 P0(x) = 1

25.4 P1(x) = x

25.5 P2(x) = 1/2(3x2 - 1)

25.6 P3(x) = 1/2(5x3 - 3x)

25.7 P4(x) = 1/8(35x4 - 30x2 + 3)

25.8 P5(x) = 1/8(63x5 - 70x3 + 15x)

25.9 P6(x) = 1/16(231x6 - 315x4 + 105x2 - 5)

25.10 P7(x) = 1/16(429x7 - 693x5 + 315x3 - 35x)

LEGENDRE POLYNOMIALS IN TERMS OF θ WHERE x = cos θ

25.11 P0(cos θ) = 1

25.12 P1(cos θ) = cos θ

25.13 P2(cos θ) = 1/2(3 cos2 θ - 1)

25.14 P3(cos θ) = 3/2(5 cos θ - 3 cos3 θ)

25.15 P4(cos θ) = 1/8(9 + 20 cos2 θ - 35 cos4 θ)

25.16 P5(cos θ) = 1/128(30 cos θ + 8 - 35 cos3 θ + 63 cos5 θ)

25.17 P6(cos θ) = 1/32(5θ + 105 cos2 θ + 126 cos4 θ + 231 cos6 θ)

25.18 P7(cos θ) = 1/512(1715 cos θ + 189 cos θ + 231 cos θ + 429 cos θ

GENERATING FUNCTION FOR LEGENDRE POLYNOMIALS

25.19

1/√(1 - 2tx + t2) = n=0 Pn(x)tn

146

Dettagli
Publisher
A.A. 2020-2021
13 pagine
SSD Ingegneria industriale e dell'informazione ING-IND/06 Fluidodinamica

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher Marco8Ing di informazioni apprese con la frequenza delle lezioni di Termofluidodinamica M e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Università degli Studi di Bologna o del prof Rossi Di Schio Eugenia.