Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
GOLDFELD
- based
- organ
- we est
- we c
WHITE
- OLS e
- auxil
- we t
- we
AR in ge
- mu
DYNAMIC M
- AUTOREGR
TIME SERI
- It includes
FDL (fi
Yt: d0 + d0
AR
ACF PQL 0
PCF 0.0 0
Linear Bivariate Model
y = β₁ + β₂x₂ + μ
Linear Model Hypothesis
E(y | x) = β₁ + βx
var(y | x) = σ²
cov(yi ,yi) = 0
yi ~ N(β₁+β₂x₂, σ²)
- μ to β (E(μ | x) = 0)
- homoscedasticity, var(μ | x) = σ²
- corr(μj, μi) = 0
- strict exogeneity, corr(μi, xi) = 0
- μ ~ N(0, σ²) n.d.
to derive the OLS estimators for β₁, β₂ we solve:
min β₁, β₂ Σ(yᵢ - β₁ - β₂x)²
- ∂Σε²/∂β₁ - 2Σ(y - β₁ - β₂x) = 0
- ∂Σε²/∂β₂ - 2xΣ(y - β₁ - βx)
Σy = Nβ₁ + b₂Σx
Σxyᵢ = b₁Σx + b₂Σx²
b₁ = ȳ - b₂x
we use this here
bi = ȳt + b₂x̄
b₂[Σxᵢ² - ȳnΣx] Σxy - ȳnΣx̄Σy
bi = ȳt + b₂x
b₂ = Σxy / Σx²
Σxy = ȳtΣx̄ + b₂x̄Σxₓ + b₂Σx̄²
TSS Decomposition
-${\Sigma y_{i}^{2}, r^{2}Σy_{i} + Σe²}$
TSS ESS RSS → 1, 1 - RSS/TSS
Non Linear Relationships
- Squared trasf. a quadratic function! if change in x percent change in E(y) is 2b(x / y)
- log. trasf. we then consider the exp(log y) a + exp(bx) e:bᴮx
- log.log trasf. elastacity β log y = a + (log x / β)
- cubic (reciprocal)
the elastacity
- measures the error of fit = √Σεᵢ²/₍n-2₎ = √1/n-2 Σεᵢ²
- spread or distribution of μ
- average size of OLS residuals
restricted regression
A: A1 regression model with all covariates, where ESS: Ŷ'Ŷ - ê'ê = TSS-RSS
A2 regression model with only the constant, where ESS: 0; RSS: TSS: Ŷ'Ŷ
We use the test F = [(e'e-er'er)/q] / [er'er/(n-k-r)] = (q, n-k-r)
- restricted RSS non restricted RSS
- n: n° rows in matrix R
- q: n° elements in null hypothesis
- k: diff. between n. coeff. considered in the restr.-non restr.
FITTING THE RESTRICTED REGRESSION
Given the Ŷ: β1 + β2x2 + β3x3 +u and the H0: β2 + β3 = 1, we have the restricted model
Ŷ - β1 + β2x2 + (1 - β2)x3 + u , OLS obtained sub b0
Minimization problem: φ: (y - xbr)' (y - x If we have autocorrelation instead, not diagonal, we have : E (μtμt+S)
-> In homosch, Ω are symmetric with respect to and independent from
[es = cov(ut, ut+s) / √(voi(ub) voi(uts))] (autocorrelatious) es: %/√%
The variance matrix is:
[ y1 0 0 0 y2 0 0 0 yn-2 ] 2ρs[ i ρ ... ρ1 ...] 2
OLS are: unbiased ✔ consistent ✔ inefficient ❌ incorrect std. errors ❌
(correct v. matrix isn’t δ’δ -1 (x’x)
but: δ ’x’x’x’ Ω x’x’)
- We can find a P matrix => Ω-1ρρ, as BNL (x’x’Ωx)x’Ω-1ŷ
(energyML / (y - xb0LS) Ω-1(y-xb0ml)
(x’px’px) x’px’y ⟹ [(px)’(px) (px)’(py)]
we obtain y