Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
Feedforward
inverse dynamics
we have knowledge
and generate the course
to reach the desired
to keep a force fixed, because
coordinate
to unknown disturbances
if we have more than one external force
we will have more than one particular
solution, we are superimposing all effects
because the system is linear or
orthogonally linear
Feedback
dynamics of the system
ex of fc with PID controller.
So you can modify the
the system changing are related parameters, as the changing
ratio or the natural frequency of the system.
we have modified the dynamics of
the system, so we can modify the
xe this can faifor the system arrive
If the system is periodic linear we are very lucky but in real life this case is very rare. Usually we have one linear system and so the solution can't be computed analytically so we have to use numeric approximation or integration of differential equation methods. However, if we are ensured of the possibility around the position of equilibrium (0) of reducing the system and compute numerically the result.
- Non-linear eq of motion (manipulate equations)
- Find equilibrium position
- Linearize around this equilibrium position and study
Remember, that if we have a feedback system we will have pure piece: fc = fc (Xx) = fc (Xp, Φ, δ) + (∂fc/∂x)Xp (X-Xp) + ...
→ equilibrium position of linear equilibriumex: Xp, Ẋp, Ẋp = Ẋ
Mix potential and damping and mix + cX + kX = fc (X, Ẋ, χ) always among eqs.
κX₀ = fc (X, ɸ, δ) = Xp from numerical methods (use analytically)
(n+1+A) ẏX' + (C+C') ẋX' + (κ+κ**) dx = φ
Valid if we consider more paradigmatic consequence position
C + φ, k>φ ⇒ D ℬs! asymptotically stable system
G + φ, k