Anteprima
Vedrai una selezione di 10 pagine su 217
Appunti completi del corso "Energy Systems LM" Pag. 1 Appunti completi del corso "Energy Systems LM" Pag. 2
Anteprima di 10 pagg. su 217.
Scarica il documento per vederlo tutto.
Appunti completi del corso "Energy Systems LM" Pag. 6
Anteprima di 10 pagg. su 217.
Scarica il documento per vederlo tutto.
Appunti completi del corso "Energy Systems LM" Pag. 11
Anteprima di 10 pagg. su 217.
Scarica il documento per vederlo tutto.
Appunti completi del corso "Energy Systems LM" Pag. 16
Anteprima di 10 pagg. su 217.
Scarica il documento per vederlo tutto.
Appunti completi del corso "Energy Systems LM" Pag. 21
Anteprima di 10 pagg. su 217.
Scarica il documento per vederlo tutto.
Appunti completi del corso "Energy Systems LM" Pag. 26
Anteprima di 10 pagg. su 217.
Scarica il documento per vederlo tutto.
Appunti completi del corso "Energy Systems LM" Pag. 31
Anteprima di 10 pagg. su 217.
Scarica il documento per vederlo tutto.
Appunti completi del corso "Energy Systems LM" Pag. 36
Anteprima di 10 pagg. su 217.
Scarica il documento per vederlo tutto.
Appunti completi del corso "Energy Systems LM" Pag. 41
1 su 217
D/illustrazione/soddisfatti o rimborsati
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Estratto del documento

Review of Fluid Properties

Pure Fluids

Ideal Gases

pV = nRT

pV = RT

The kinetic energy is stronger than the Van Der Waals forces

Subcooled Liquid

Saturated Liquid

Critical Point

Vapor

2 phases

Saturated Liq. + Vap.

Saturated Vapor

Andrew Curve (saturation curve)

Supercritical Fluids

Subcritical Fluids

Vapor Phase

How to model the behavior of pure fluids, so how to calculate the dynamic properties? It depends where you are in the diagram:

  • T > 3 Tcr, p < pcr ideal gas model
  • T < 3 Tcr, p > pcr real gas (vapor)

p v = R T (Equation of State)

Z = v(p,T) / (RT / p) (compressibility factor)

The real gas effect increases if T is lower and p is higher.

Estimation of Equation of State for Real Gases:

  • Tables and Diagrams with experimental data
  • Best-Fit Function of experimental data
  • General Equation of State, trying to model also the real gases

Ex: (p + n2a / v2)(V - nb) = n Ru T (Van Der Waals)

  • a = measure of the average attraction force between molecules
  • b = volume occupied by the molecules

V ∂ρ/∂t dV + ∫Sin ρ Vr v dA + ∫Sout ρ Vr v dA + ∫SL ρ Vη dA + ∫SR ρ Vη dA + ∫SP ρ Vr v dA = 0

inout

V ∂ρ/∂t dV − ṁin + ṁout + ∫Sη ρ Vr v dA + ∫SP ρ Vr v dA = 0

  • Steady Flow Condition:

    for every property of the fluid (p, h,...):∂ϕ/∂t = 0 (for ∀ point of V)

    INi = ∑OUTi

  • Steady Average Flow Condition:

    ∂ϕ̅/∂t = 0 where ϕ̅ = 1/T ∫tt+T ϕ(t) dt

    IN ṁ̅i = ∑OUT ṁ̅i

Examples without chemical reactions:

Valve

  • Mass Balance: ̅m1 = ̅m2
  • Atomic Balance: Ai, T = Ai,2, T
  • Ni, K = Ni, K (no chemical reactions)
  • Energy Balance: Q̇IN - ẆOUT + ̅m1hTOT,1 = ̅m2hTOT,2 = 0 (y adiabatic)

hTOT,1 = hTOT,2

h1 + V12/2 g z1 + eCH,1 = h2 + V22/2 g z2 + eCH,2

h1 = h2

Turbine / Compressor

  • Mass Balance: ̅m1 = ̅m2
  • Atomic Balance: Ai, T = Ai,2, T
  • Ni, K = Ni, K (no chemical reactions)
  • Energy Balance: ẆOUT = ̅m1(h1 + V12/2) - ̅m2(h2+ V22/2)

BLADE POWER (power extracted from the fluid)

MECHANICAL POWER: Ẇmec = ẆOUT ηmec

ELECTRICAL POWER: Ẇel = Ẇmec ηel

Mixtures

In general the stream of reactants R can be a mixture of species, how can we determine the enthalpy and the chemical energy of a mixture?

  1. hTOTR = hR(T,p) + VR2 / 2 + gzR + eCNR
  • Chemical Energy

eCNR = mΣk=1 YR,k eCNK

  • Enthalpy

hR(T,p)

  • if R is a pure fluid: h(T,p) is computed using the relations of that fluid
  • if R is a mixture:
    • real mixture: molecules of different types tend to interact, with forces

    hR = nΣk=1 ynk hk(T,p,xnι) ↳ concentration of the other molecules

    • ideal mixture: there are no forces between different molecules

    hR = nΣk=1 ynk hk(T,p0k) ↳ partial pressure

    • ideal mixture of ideal gases:

    hR = nΣk=1 ynk hk(T)

Example:

hTOTR = mΣk=1 ynk Cp,k (T - Tref) + VR2 / 2 + gzR + eCNR

Cp,R = Cp of the mixture

Parallel Flow

the slope of the lines depends on the mass flow rate of the fluid:

= ṁHOT CP HOT (T1 - T)

T = T1 - / ṁHOT CP HOT

dT / d = - 1 / ṁHOT CP HOT

Counter Flow

To increase the heat transferred, instead of increasing the length of the fins, is better to increase the density of the fins.

In order to optimize the heat transfer we have to find the right combination of length and density.

Design Procedure of Direct Transfer Heat Exchanger

Problem to be solved:

  • Input data: design specifications:

Determine the best HX type and its design (area, n° of tubes, diameter, thickness and length of the tubes and of the shell)

Steps:

  • Determine the heat to be transferred Q̇ = ṁₕₒₜ Cₚₕₒₜ (Tₕₒₜ ₍ᵢₙ₎ - Tₕₒₜ ₍ₒᵤₜ₎)
  • Select the construction type
  • Set the desired speed for the two fluids → h
  • Evaluate the heat transfer area A using the heat transfer rate equation
  • Work out the geometrical parameters of the HX. These variables cannot be selected independently, but the combination must satisfy the following equations:
    • Aᵢ = π Dᵢₜ Lᵢ Nₚₐₛₛₑₛ
    • Sᵥ = π Dᵢₜ² ṁ̇ / ρ V Nₜ
  • Preliminary mechanical design or check
  • Rating calculation/simulation CFD: We fix the flow rate and the temperatures at the inlet and we fix the geometry, and we calculate the outlet temperatures. With the software we look for the most accurate estimate of Q̇ and the outlet temperatures, because we need to meet the specifications

This situation can lower the efficiency of the engine.

How do we solve this problem, so how can we decrease w?

  • reducing the area of the HXw = w (̇)wmin (whot - wcold))
  • reducing the flow rate of air reducing the rotational speed of the fan, or the flow rate of water with a bypass valvew = w (̇)wmin (whot - wcold))
  • recycle across HXw = w (̇)wmin (whot - wcold))

In the previous example let's assume to decrease the flow rate of water:

̇wH2O = 0.6 ̇H2O

w = w (̇)wmin (whot - wcold))

(̇)whot: 0.6

(̇)cold: 0.5

(̇)wmin = (̇)wmin

NTUw = Uw Aw / (̇)wmin = NTUs? → NTUw = NTUs

̇w has decreased, so w will decrease, but U mainly depends on hair, so Uw = Us

Crw = 0.83 ≠ Csws

Dettagli
Publisher
A.A. 2022-2023
217 pagine
2 download
SSD Ingegneria industriale e dell'informazione ING-IND/33 Sistemi elettrici per l'energia

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher F3D3R1C0_99 di informazioni apprese con la frequenza delle lezioni di Energy Systems LM e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Politecnico di Milano o del prof Martelli Emanuele.