vuoi
o PayPal
tutte le volte che vuoi
Equilibramento spinte assiali
Nella parte superiore delle turbine Francis agirebbe la pressione di ingresso della girante 1
(sezione A).
Ciò porterebbe a una enorme spinta verso il basso, non tollerabile per il supporto di spinta assiale
e non bilanciabile, poiché nella opposta sezione (B) si ha una superficie minore (B<A) e una
pressione minore ( 2< 1), per effetto della comunicazione con l’ambiente di valle.
pressioni
Al fine di equilibrare l'azione delle spinte assiali si cerca di realizzare nelle zone A e B
uguali che agiscono su aree uguali, in modo da ottenere spinte uguali e opposte. Ciò si ottiene:
1. Praticando dei fori (C) sulla girante vicino all'attacco del mozzo, per collegare la camera A con
lo scarico dove regna una pressione inferiore.
2. Per controllare la pressione nella camera A e B si realizzano delle ostruzioni, tramite riduzione
dei giochi tra due superfici (una fissa appartenente alla carcassa e una rotante appartenente al
rotore). p2 P1
> di
agile
Pz su porzioher MNORE
una
superficie.
fluidodinamiche
le tenute 2 ambienti
isolato
-
↳
·æ
Condoo di scarico
Nelle turbine Francis a valle della girante il fluido non è lasciato cadere liberamente nel canale di
scarico (figura (a), così come invece accadeva nelle Pelton), bensì è convogliato con un condotto
che si immerge nel canale sottostante.
Ciò permette di recuperare l'altezza , in quanto è utilizzata come corrispondente depressione
p
all’uscita dalla girante.
Quindi tutto il salto disponibile ( = − ) è completamente sfruttabile.
Ciò è particolarmente importante, considerando il minore dislivello disponibile per le turbine
Francis rispetto alle Pelton, che renderebbe tale perdita percentualmente molto rilevante.
Grazie all’introduzione di un condotto di scarico cilindrico (figura (b)), 2 < del termine .
divergente
Inoltre, il condotto di scarico è realizzato con un andamento (è detto anche tubo
diffusore, recuperando
figura (c)), in modo da rallentare la velocità del fluido di scarico in tal modo
dell’energia cinetica
anche parte di scarico sotto forma di un’ulteriore riduzione della pressione
2 all'uscita della girante.
-
eret 2 3
-
ex,
* patm
= 22
Zo I
I
3 23
I I
-
2.3c-c z) P3-P2 Ra xy X
g(23
>- + -
=
- +
+
Patm Patm-fgHp
P2
=> = 23
yg/za
↑3 patm+ -
=
- .
+ g(-22)
) Ra
g(za -
+ +
8 2
I I Ra
-a g(za-ze),
+ Si
Ap
- -c
gHp_cha Ra
- - +
Patm
P2
Grazie tubo del dislivello
al redatta di
pz=patm recupero
del di
recupero artico
e energia
Prestazioni turbina Francis
In analogia con quanto visto per la turbina Pelton, anche per le turbine Francis le prestazioni sono
determinate sperimentalmente su un grafico ( , ), tenendo costante il salto (a rigore ).
Il diagramma collinare che si ottiene per le curve a uguale rendimento è concettualmente identico a
quello visto per le Pelton.
Le linee ad uguale grado di ammissione (in questo caso a pari angolo 1 di inclinazione delle pale
hanno un andamento
del distributore) non sono più delle linee orizzontali come nelle Pelton, ma
crescente- decrescente: la portata che attraversa la macchina è influenzata dalla velocità di
rotazione della girante .
Ciò è dovuto alla modifica dei triangoli di velocità a partire da una condizione nominale ottimale.
Reudimento massime
~
- net
Plagramma 0 a
fissato · vana con
= n
⑧
do
H.
dato
per me &
Sezionando il diagramma per una data velocità di rotazione ( corrispondente alla velocità
ഥ)
richiesta dall’alternatore per la produzione di energia elettrica, si ottiene l'andamento del
rendimento al variare della portata.
Si osserva come la curva che si ottiene sia molto meno appiattita di quella della turbina Pelton: ciò
dimostra come aumentando o riducendo (anche di poco) la portata rispetto al valore nominale, si
abbia un brusco calo del rendimento della macchina, proprio a causa delle variazioni sulla
condizione di imbocco delle pale della girante.
Fissato Hue i
f(a)
him =
funzione di a
solo
in
Turbine a Elica/Kaplan
Nelle turbine Francis al diminuire del salto H a disposizione e al parallelo aumentare della portata, il
moto del fluido attraverso le girante acquista un andamento sempre più assiale. Per i più bassi
salti (fino a pochi metri) e le più grandi portate (fino a 500 m3/s) la girante diventa di tipo
assiale turbina a elica,
puramente e la macchina prende il nome di presentando una struttura
simile a quella della turbina Francis (bassi salti, grandi portate).
turbine a reazione ad asse verticale.
Si tratta di chiocciola
Si osserva come vi sia ancora un distributore a che fornisce la componente tangenziale
al fluido, mentre la girante è molto più lontana ed è attraversata in direzione puramente assiale.
Fra l'uscita del distributore e l'ingresso della girante c'è un'ampia zona dove il fluido è libero di
muoversi. Il moto del fluido in questa zona è di fondamentale importanza per l'analisi dei triangoli
di velocità nella girante. lebens
flusso
~il di muoversi
é
I
&
BASS SAU
AUE PORTATE
La differenza principale dalla turbina Francis è che in uscita dal distributore non entra
immediatamente nella girante. La girante è molto lontana dal distributore (0-1). La regione in
azzurro è quella in cui il flusso è libero di muoversi.
Nella regione tra il distributore e l'elica (azzurra) si instaura un campo di moto complesso: c'è la
sovrapposizione di due grandi vortici:
• un vortice ha asse coincidente con l'asse della macchina; le pale introducono il flusso con una
componente tangenziale che dà vita a un primo vortice. Per studiare questo vortice si richiama la
legge del vortice libero: si tiene costante il momento angolare (rapporto fra distanza da asse di
rotazione del vortice e la sua componente di velocità periferica: più ci si avvicina al centro più la
velocità è alta).: vortice viola
• il secondo vortice si crea perché la corrente fluida non solo ruota intorno all'asse della macchina
ma viene deviata dall'essere radiale a diventare assiale: vortice fuxia
vartice decha
coassiale ali asse
t
Ämmımırrr
a Vatice che diventa assiale
.
eto D
Ct .
.D-
La legge dice che, man mano che D scende ct aumenta (più ci si avvicina all'asse di rotazione più
la velocità aumenta).
M
X B
TRIANGOL
D A
IN prti
USUTA rale
i 2 che
per
: ,
o PORTATA
la deve canservare
si -
esseri
A insaita deve
sideve
a
c
conservane
,A !
Freamaeis
leaue turbine
assiAle
NECESSARLAMENTE
-A
A
ala lawor
deve be
pala
la convertito
over exe
* tangenzsali
caponnti di valonta .
çlkaxhhacA "......
,%.
Scait aIA
La
B vhlB
-MBl xtBl
J
EB
'sClz,
D Ct Pui viawi
sie prie Ctß
tal nuozzo
eresce
Ica la
dal distrubutare
cassiale uscendo readiale
- componente
diventando
go
di
subisce rotazione
lva "
In
Assiale rotaziona ie
si mnesca 20
questa
Ca .
,ß vatice
T
MA
ó La velocetà periferica
dai
Aumenata all esten
entero
Mß
T
STUDIO ACCADE
COSA INAi öâvüüüüz
piccola grawde
cassiale
CE Ctß
B sxUB
iin cayp
I B s
-mum-mumun
ÖB
▪
Sono dunque noti lungo il bordo d'ingresso della pala i valori delle componenti tangenziali ( ) e
assiali ( ). Si possono quindi calcolare i valori delle velocità assolute 1 d'ingresso, anche se
variabili punto per punto lungo lo sviluppo radiale della pala (da A a B). Combinando le velocità
assolute con la velocità 1 di trascinamento (che varia linearmente con il diametro) si possono
calcolare le velocità relative 1 e si completa la conoscenza delle condizioni di imbocco.
I triangoli di velocità in ingresso sono molto diversi fra loro se analizzati al mozzo o all'estremità
della pala, modificandosi con continuità in tutti i punti intermedi.
Per determinare i triangoli allo scarico, bisogna ricordare che:
Nell’attraversamento della girante rimane costante la componente assiale del fluido, essendo
costante la sezione a disposizione.
All'uscita non sono accettabili componenti tangenziali, la cui energia cinetica non risulterebbe
recuperabile nel successivo tubo diffusore.
Combinando i due fattori, ne consegue che la velocità assolute di scarico 2 siano le componenti
assiali della velocità di ingresso: CA2 Caa
=
[Ba
CB2 =
I profili delle pale nelle sezioni A (estremità) e B (mozzo) sono notevolmente diversi. All'estremità
l'andamento è quasi piatto e poco deviato, mentre al mozzo si ha un andamento più inclinato. In
tutti i punti intermedi vi sarà una progressiva transizione da un profilo all'altro: la pala dunque non
profilo svergolato.
sarà a profilo costante, ma variabile, definendo un
Il numero delle pale necessarie per una girante è definito sperimentalmente e varia tra 4-10.
diametri
Inoltre solitamente si progetta un leggero ricoprimento tra le pale nella vista assiale. I delle
sono tra i più grandi
turbine sin qui descritte di tutte le macchine idrauliche, raggiungendo valori
fino a 8 m. La velocità di rotazione delle pale è inferiore ai 100 giri/min.
La turbina ad elica presenta gli stessi problemi di cavitazione già visti per la Francis.
Inoltre, visti i limitati salti utilizzabili e la necessità di elevate velocità di attraversamento per fare
grande quota di energia
defluire enormi portate con dimensioni limitate della macchina, si ha una
cinetica di scarico, il cui recupero è percentualmente molto rilevante.
trangoli
Compongo di usata
ingresso e
i
&si i
Wi