Anteprima
Vedrai una selezione di 7 pagine su 30
Fundamentals of electrical circuits Pag. 1 Fundamentals of electrical circuits Pag. 2
Anteprima di 7 pagg. su 30.
Scarica il documento per vederlo tutto.
Fundamentals of electrical circuits Pag. 6
Anteprima di 7 pagg. su 30.
Scarica il documento per vederlo tutto.
Fundamentals of electrical circuits Pag. 11
Anteprima di 7 pagg. su 30.
Scarica il documento per vederlo tutto.
Fundamentals of electrical circuits Pag. 16
Anteprima di 7 pagg. su 30.
Scarica il documento per vederlo tutto.
Fundamentals of electrical circuits Pag. 21
Anteprima di 7 pagg. su 30.
Scarica il documento per vederlo tutto.
Fundamentals of electrical circuits Pag. 26
1 su 30
D/illustrazione/soddisfatti o rimborsati
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Estratto del documento

FUNDAMENTALS OF ELECTRICAL CIRCUITS

ING. DELL'AUTOVEICOLO

A.A. 2023/24

DOC. FABIO FRESCHI

SARA PASTINE

CONTENTS

  1. Definitions
  2. Equations
  3. Components
  4. Connection of Components
  5. Method to Solve Circuits
  6. Controlled Generators
  7. Nodal Analysis
  8. Dynamic Circuits
  9. Transient Analysis
  10. Complex Numbers
  11. AC Circuits
  12. Power Balance
  13. Formulary
  14. Definition Summary

Components

  • Passive component: component that always absorbs positive energy (resistors, capacitors, inductors)
  • Active component: may deliver positive energy (voltage and current generators)

Resistors

  • [R]-resistance-Ω=m²·Ω
  • [G]-conductance-siemens-S
  • [ρ]-resistivity-Ω·m = m²·Ω m
  • [γ]-conductivity-S/m

v(t)=i(t) R

i(t)=v(t): R(t)= σ(t)

R= L / S

1 / R=G

p(t)=v(t)·i(t)=Ri²+ / R= / R+Gv²

Voltage Generator

v(t)=e(t)

i(t) depends only on the circuit

p(t)=v(t)·i(t)=e(t)·i(t) ≥0

e:electromotive force

Current Generator

i(t)=α(t)

v(t) depends only on the circuit

Short Circuit

v(t)=0 iL, vL = resistor with R=0.Ω

= voltage generator with e(t)=0V

= ideal connection

Open Circuit

i(t)=0 vL vL = current generator with α(t)=0V

= resistor with R=^∞^Ω or G=0S

  • Switch =
  • open circuit if open
  • short circuit if closed
  • THEVENIN ⟶ NORTON

RTh = RN JTh = RNJN

EXAMPLE

RN = RAB • RB//RS

JN1 = e1/RB JS1 = e2/RS iN = J3 + J5 = e1/RB + e2/RS

iN = RN/(RN + RL) iN

  • MILLIAN'S THEOREM

I) Assume JTh as known and calculate the branch currents

e1 - Rii1 - JThN = 0 ⟶ i1 = (e1 - JTh)/R4

-e2 - Rii2 - JThN = 0 ⟶ i2 = (-e2 - JTh)/R3

JTh - Rii3 = 0 ⟶ i3 = JTh/R3

i4 = Qu i5 = Q5

II) Apply KCL to node A

i1 + i2 + iS + i4 + i5 = 0

(e1 - JTh)/R4 + (-e2 + JTh)/R3 + Qu + (Qu5)/R0) = 0

III) Find JN

JN = (e1/R2 + Q5 + The)/The

JN = e2/R2 + e1/R1 + e1/R2

NODAL ANALYSIS

  1. Label nodes from 0 (n)
  2. Define node potentials (φi)
  3. Assign φ0=0 to 3 unknown potentials

Write KCL equations at nodes (e excluded) assuming '+' for the i flowing outside the node using the rules below

g = Rjk/Rjk = GJrKq - φj)iJ = isrNODE 1: -@1 + G22 - φ1) + G11 - φ3 + φ3 = 0)NODE 2: -G23 - φ2) = 0NODE 3: G33 - φq) + G44 - φy) + G13 - φ2)

  • GJJ: sum of the conductances connected to node 3
  • GJR: the conductance that connects nodes 1-K (Symmetric matrix)
  • φJ: impressed current write '+' when current enters node 'J' and '-' when leaves node J
  • The matrix is symmetric
  • The sums of the rows are the G connected to node φ
  • The sum of the result matrix is the total current leaving the node φ

CIRCUITS WITH VOLTAGE GENERATORS

  • Generator in series with resistor
  • Generator between 2 nodes

Norton's transformation

ix is unknown

φk - φj - e

t>0

RB=RAB=(RA+R2)/RB

IN=(R1/R4+R2)A

IR(t)=k et/τ

MAGIC FORMULA

IR(t) = (I0 - I) e(-t/τ) +I

τ = L/Req

[XC] - capacitive reactance

  • Generalized Ohm's Law

Resistor   V=RI Capacitor   VI=jXCI Inductor   V=jXLI

Re = jX = Z = V/Icomplex operator

Resistors, capacitors and inductors can all be transformed into impedances. Impedances in circuits can be simplified with series and parallel rules of resistors.

  • RLC Circuits

R   ZR=R C   ZC=jXC=j (1/wC) L   ZL=jXL=jwL

VR=ZRI VC=ZCI VL=ZLI

Zeq=ZR+ZC+ZL V=VR+VC+VL=ZRI+ZCI+ZLI=(ZR+ZC+ZL)I=ZeqI

Zeq(w)=ZR+ZC+ZL=R+jXC+jXL=R+j(jXC+jXL)=R+j(1/(jwC)+jwL)

=R-j(1/wC)+jwL=R+j (R+j (1/wC)+jwL)=R+j (Xeq(w))

limw→0Xeq(w)-limw→0(1/wC) → -∞→Xeqacts like C

limw→∞Xeq(w)-limw→∞(wL)→∞→Xeqacts like L

wsℓws+Xeq<0→capacitive reactance w=0(w=ws)+Xeq=0→inductive reactance ws=wsubeq subeq =−1/p w2L⇔sub eq

Xeq=limw→∞Xeq(w)-1/(wL)-1/(2π)(wsS) → -1/(wL(wsR))

L0=(wc-m)/2π→1/2π wL2mT(L/C)Resonance Frequency

Dettagli
Publisher
A.A. 2023-2024
30 pagine
SSD Ingegneria industriale e dell'informazione ING-IND/33 Sistemi elettrici per l'energia

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher Spastine di informazioni apprese con la frequenza delle lezioni di Fundamentals of electrical systems e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Politecnico di Torino o del prof Freschi Fabio.