vuoi
o PayPal
tutte le volte che vuoi
Exercise 10.1
Let Γ be the union of the parabolic arc y = 4 - x2 going from A (-2, 0) to C (2, 0) and the circle x2 + y2 = 4 from C to A.
Integrate the function f(x, y) = x along the closed curve Γ.
Let's have a look at Γ.
∫Γ f ds = ∫Γ1 f ds + ∫Γ2 f ds
Γ1 parametrisation
γ(t) = (t, 4 - t2), t ∈ [-2, 2]
γ̇(t) = (1, -2t)
‖γ̇(t)‖ = √(1 + 4t2)
∫Γ1 f ds = ∫-22 t · √(1 + 4t2) dt = 1/8 ∫-22 p t(1 + 4t2)1/2 dt
= -1/8 [3/2 (1 + 4t2)3/2 ]-22 = 0
Γ2 parametrisation
γ(t) = (2 cos t, 2 sin t), t ∈ [π, 2π]
γ̇(t) = (-2 sin t, 2 cos t)
‖γ̇(t)‖ = 2
∫Γ2 f ds = ∫π2π 2 cos t · √2 dt = 2√2 [sin t]π2π = 0
Therefore: ∫Γ f ds = ∫Γ1 f ds + ∫Γ2 f ds = 0
Exercise 10.2
Consider the cycloid parametrized by γ(t) = (r(t-sin t), r(1-cos t)), t ∈ [0, 2π],
with r > 0 and constant linear density μ = 1.
Find the centre of mass.
We have to find the mass:
ℓ(δ) = ∫02π 1 ds = ∫02π √(2(1-cos t)) dt = 2r ∫02π √(1-cos t)/2 dt
f(t) = (r(1-cos t), r sin t)
||f'(t)|| = (r2(1-cos t)2 + r2sin2t)1/2
= (r2+r2cos2t + r2sin2t - 2r2cos t)1/2
= r (2 - 2 cos t)1/2
= 2r ∫02π sin(t/2) dt = 4r ∫02π 1/2 sin(t/2) dt =
= 4r [–cos(t/2)]02π = 4r [1+1] = 8r
xG = 1/ℓ(δ) ∫02π x μ ds = 1/8r ∫02π r(t–sin t) r√(2–2 cos t) dt
= 1/8r ∫02π 2r2(t–sin t) √(1–cos t)/2 dt
= r/4 ∫02π (t–sin t) sin(t/2) dt = 4π2/4 = πr
∫02π t sin t/2 dt = [2t(− cos t/2)]02π + ∫02π 2 cos t/2 dt = 4π + 4 [sin t/2]02π + 0
= 4π + 4 [sin t/2]02π
= 4π
by parts
f g' = [F g]-F' g
f(t)=t, g'(t)=sin t/2
f'(t)=1, g(t)= ∫ sin t/2 = 2∫ sin t/2 = 2 (– cos t/2)
∫02π sin t sin(t/2) dt = ∫02π sin t (1–cos t/2)/√2 dt = √2/2 [3/2 (1–cos t)3/2 ]02π = 0
Σe parametrized by be(θ, h) = (cosθ, sinθ, h)
θ ∈ [0, 2π], 0 ≤ h ≤ 3 - cosθ - 1⁄2sinθ
area(Σe) = ∫Σe 1 dS = ∫02π ∫03-cosθ-1⁄2sinθ 1 dθ dh = ∫02π 3 - cosθ - 1⁄2sinθ dθ
<∂θbe∧∂hbe∇^ = || || || -sinθ cosθ be = (cosθ,sinθ,0) 0 1
||∂θbe∧∂hbe|| = 1
=[3θ - sinθ + 1⁄2cosθ]02π
= 6π + 1⁄2 - 1⁄2 = 6π
Σ − π + 3π⁄2 + 6π = 13⁄2 π