Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
Y(r,t) Magnetic vector field H(r,t)
Wave function
Schrodinger equation Maxwell equations
2 2
p 1
+ Y = Y =
V ( r ) ( r ) E ( r )
H ( r ) H ( r )
E E 2
2 m ( r ) c
− ( )
ic
=
E ( r ) H r
( r )
Periodicity of the lattice potential Periodicity of the dielectric constant
(
( )
)
=
= +
+
V r
r V (
( r
r R
R ) )
Bloch theorem for wave function Bloch theorem for harmonic modes
( )
( ) =
Y = H ( r ) u ( r ) exp ik r
( r ) u ( r ) exp ik r k k
k k
Bloch theorem for wave function Bloch theorem for harmonic modes
( )
( ) =
Y = H ( r ) u ( r ) exp ik r
( r ) u ( r ) exp ik r k k
k k
The values for the wave vector k The values for the wave vector k
lie in the Brillouin zone in lie in the Brillouin zone in
reciprocal space. reciprocal space.
Quantum Mechanics in a Electromagnetism in a Periodic
Periodic Potential (Crystal) Dielectric (Photonic Crystal)
Periodicity of the lattice potential Periodicity of the dielectric constant
(
( )
)
=
= +
+
V r
r V (
( r
r R
R ) )
Dispersion Dispersion
diagram of diagram of
electron energy photon energy
(k)
E = E(k) =
1D Photonic Crystals For wavelength in band gap
1
2 a For wavelength not in band gap
=
1 2 1 2
1D Photonic Crystals: DBR
layer numbers spectrum sharpness reflectance
within stop band
8 periods
6 periods
4 periods
1,0 2 periods
0,8
Reflectance 0,6
0,4
0,2
0,0
0,4 0,6 0,8 1,0 1,2 1,4
energy [eV]
1D Photonic Crystals: DBR
refractive index stop band width
contrast n =4.5 n =1.7
1 2
n =4.0 n =1.7
1 2
n =3.5 n =1.7
1 2
n =3.0 n =1.7
1,0 1 2
0,8
Reflectance 0,6
0,4
0,2
0,0
0,4 0,6 0,8 1,0 1,2 1,4
energy [eV]
1D Photonic Crystals: DBR
1,0
1
0,8
2 Transmittance 0,6
0,4
0,2 Stop band
0,0 frequency (arb. units)
1D Photonic Crystals: Fabry-Perot cavity
Defect state in the gap
1,0
1 0,8
2 Transmittance 0,6
3 0,4
0,2 Stop band
0,0 frequency (arb. units)
Surface Modes on 1D Photonic Crystals
One-dimensional photonic crystals (1DPC) made by a stack of dielectric
bi-layers deposited on a glass substrate
SiO
2
127 nm
SiO
2
137 nm
Ta O
2 5
95 nm glass substrate
Surface Modes on 1D Photonic Crystals
One-dimensional photonic crystals (1DPC) made by a stack of dielectric
bi-layers deposited on a glass substrate
excitation l=532
Calculated Reflectivity map Field intensity at nm
R(q,l) (TE-pol)
1.5D Photonic Crystals: DBR on multilayer
Bragg’s = −2
According to law, almost full reflection occurs when
Λ
Τ
= 2
where is the grating vector of the DBR
DBR
2D FDTD Model
Normalized power
at the monitor
(Reflected BSW)
Λ = 260nm
DBR
1.5D Photonic Crystals: cavity on multilayer
Fabry-Perot cavity mode for Bloch Surface Waves 2D FDTD Model
Normalized
power at the
monitor
(Reflected BSW)
D= 570 nm
Λ = 260 nm
DBR
1.5D Photonic Crystals: patterned multilayer
2D Photonic Crystals Band diagram for a triangular
lattice of air column drilled in a
dielectric medium with =12
(Silicon)
Filling fraction
r/a=0.48
2D Photonic Crystals field
Elecric
TM Elecric field
TE
2D Photonic Crystals: cavities, waveguides
No defects Point defect Line defect
2D Photonic Crystals: cavities, waveguides
No defects Point defect Line defect
resonant cavity waveguide
3D Photonic Crystals
Eli Yablonovitch invented the first successful photonic crystal while
at Bell Communication Research (U.S.A. Patent n°5172267-1992)
Yablonovite Defects in
Yablonovite
3D Photonic Crystals
Eli Yablonovitch invented the first successful photonic crystal while
at Bell Communication Research (U.S.A. Patent n°5172267-1992)
Yablonovite Defects in
Yablonovite
3D Photonic Crystals
E. Yablonovitch et al PRL 67 (91) 3380 Defects in
Yablonovite
11 12 13 14 15 16 17
11 12 13 14 15 16 17 Frequency (GHz)
Frequency (GHz)
3D Photonic Crystals
Spheres arranged in a face centred
cubic FCC structure (bare opal)
Photonic Crystals synthesis: 1D
multilayers grown by Plasma Assisted Chemical Vapor Deposition
substrate
plasma
several gas lines (SiH , C H , NH , H , CO , N )
4 2 2 3 2 2 2
Load-Lock chamber mc
•13.56 MHz Plasma Enhanced CVD amorph. and Si based alloys (SiC , SiN , SiO )
X X X
•2.45 GHz Electron Cyclotron Resonance CVD poly-cryst. Si-based materials, a-SiN , a-SiO
X X
Photonic Crystals synthesis: 1D
a-Si N :H Distributed Bragg Reflectors with stop band
1-x x from the visible to the IR range
high refractive
l/4
index n d =
nm H
3.5
1500 3.0
at low refractive
index l/4
index n d =
2.5 L
refractive 2.0
1.5
0.0 0.1 0.2 0.3 0.4 0.5 0.6 Corning glass
x=N/(Si+N)
Multilayers deposited by r.f. Plasma Enhanced CVD
(SiH + NH + H gas mixtures)
4 3 2 Photonic Crystals synthesis: 1D
a-Si N :H Distributed Bragg Reflectors with stop band
1-x x from the visible to the IR range
N=7 n =3,4 n =1,74
1,0 H L
N=6 n =2,9 n =1,8
H L
N=6 n =2,2 n =1,8
H L
0,8
Reflectance 0,6
0,4
0,2
0,0
400 500 600 700 800 1400 1600 1800 2000 2200
Wavelength [nm]
Multilayers deposited by r.f. Plasma Enhanced CVD
(SiH + NH + H gas mixtures)
4 3 2 Photonic Crystals synthesis: 1D
a-Si N :H based Fabry-Perot microcavities
1-x x high refractive
l/4
index n d =
H
a-Si N :H
1-x x low refractive
a-Si N :H l/4
3 4 index n d =
L
luminescent
layer
l
d = 50 nm
Substrate:
Corning glass
Multilayers deposited by r.f. Plasma Enhanced CVD Cross sectional
TEM viewgraph
(SiH + NH + H gas mixtures)
4 3 2 l = l =
Microcavities tuned @ 640 nm and 1200 nm
C C
6 periods for each DBR Thickness homogeneity: 3% on 8 cm x 8 cm
Transmittance
Reflectance
1,0
R
T,
0,5
0,0 500 600 700
m
-cavity
units] x 1
[arb. l = 5 nm emitter
intensity 0
x 40 units] 20
1.0 40
[arb. 0.8
intensity
PL 60
0.6 PL angular
0.4 dependence
500 600 700 PL 80
0.2
l [nm] 0.0
Photonic Crystals synthesis: 2D
Procedures aimed at obtaining cylindric
hole arrays on semiconductor substrates
submicrometer sized
First step: lithography
Resist (PMMA) [~50-200 nm]
Si substrate Photonic Crystals synthesis: 2D
Procedures aimed at obtaining cylindric
hole arrays on semiconductor substrates
submicrometer sized
First step: lithography (electron-beam)
max resolution ~ 10 nm
Photonic Crystals synthesis: 2D
Procedures aimed at obtaining cylindric
hole arrays on semiconductor substrates
submicrometer sized 200 nm
First step: lithography (electron-beam) (a-Si) Polytechn. of Torino, Italy
max resolution ~ 10 nm 100 nm
(InP) University of St. Andrews, UK
Photonic Crystals synthesis: 2D
Procedures aimed at obtaining cylindric
hole arrays on semiconductor substrates 298 nm, 193 nm
submicrometer sized
First step: lithography (deep UV)
max resolution ~ 150 nm mask
Photonic Crystals synthesis: 2D
Procedures aimed at obtaining cylindric
hole arrays on semiconductor substrates
submicrometer sized
First step: lithography (deep UV)
max resolution ~ 150 nm mask University of Gent, Belgium
Photonic Crystals synthesis: 2D
Procedures aimed at obtaining cylindric
hole arrays on semiconductor substrates
submicrometer sized
nd
2 step: etching Photonic Crystals synthesis: 2D
Standard RIE
Procedures aimed at obtaining cylindric
hole arrays on semiconductor substrates
React. gas i.e.
CF , O , SF
submicrometer sized 4 2 6
nd
2 step: etching (Reactive Ion Etching [RIE]) 13.56 MHz
RF power supply:
direct control of bias voltage
Photonic Crystals synthesis: 2D ICP/ECR
Procedures aimed at obtaining cylindric 13.56 MHz
hole arrays on semiconductor substrates
React. gas i.e.
submicrometer sized CF /O , SF / O ,
4 2 6 2
CCl F , CHF ,
2 2 3
nd
2 step: etching (Remote plasma-RIE) HBr,Cl
2 13.56 MHz
Independent control of bias
voltage respect rf power supply
Photonic Crystals synthesis: 2D
CAIBE
Procedures aimed at obtaining cylindric
hole arrays on semiconductor substrates i.e. XeF 2
submicrometer sized
nd
2 step: etching (Ion assisted-RIE)
Photonic Crystals synthesis: 2D
Previous technology yields aspect ratio ~ 1:10
ICP-RIE c-Si InP
University of St. Andrews, UK
a-Si
University of Ghent, Belgium
Photonic Crystals synthesis: 2D
Porous Si technology can reach aspect ratio ~ 1:100
Max-Planck-Institute, Weinberg Germany
Photonic Crystals synthesis: 3D
Procedures aimed at obtaining
FCC structures with 3D PBG
nd
1 step: bare opal fabrication
DIP COATING
SAMPLE
COLLOIDAL
SUSPENSION OF
SiO OR POLYSTYRENE
2
NANOSPHERES
THERMOSTATIC CELL
strong capillary forces at a meniscus between a substrate and a colloidal solution can induce
crystallization of spheres into a 3D array of controllable thickness
Photonic Crystals synthesis: 3D
Procedures aimed at obtaining
FCC structures with 3D PBG
nd
1 step: bare opal fabrication
SOME EXAMPLES
Polystyrene opal Silica opal
Polytechn. of Torino, Italy NEC Res. Institute, NJ, USA
Photonic Crystals synthesis: 3D
Procedures aimed at obtaining
FCC structures with 3D PBG
nd
2 step: opal infiltration
Titania infiltration and template removal (TiEt infiltration and calcination @ 575 °C)
TiO inverse opal
2
Polystyrene opal Polytechn. of Torino, Italy
Photonic Crystals synthesis: 3D
Procedures aimed at obtaining
FCC structures with 3D PBG
nd
2 step: opal infiltration
Si infiltration by CVD and template removal
Silicon inverse opal
SiO opal
2 Ioffe Institute St. Petersbourg, Russia
3D-Photonic Crystals: inverted opals
Si infiltration and template removal: Si deposition by thermal CVD (SiH precursor)
4
and Silica removal by plasma (SF RIE) and wet etching (HF)
6
Sphere