vuoi
o PayPal
tutte le volte che vuoi
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.933896 0.394382 2.368 0.0195 *
x 0.027073 0.005328 5.081 1.42e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.287 on 118 degrees of freedom
Multiple R-squared: 0.1795, Adjusted R-squared: 0.1726
F-statistic: 25.82 on 1 and 118 DF, p-value: 1.423e-06
## Running the OLS, coefficients are constant across the sample
Least Squares Dummy Variable
The different household intercepts are modeled using dummy variables.
#fixed dummy
> z1 <-lm(l ~ x + factor(hh) - 1, data=liq)
> summary(z1) Call:
lm(formula = l ~ x + factor(hh) - 1, data = liq)
Residuals:
Min 1Q Median 3Q Max
-1.66785 -0.54868 -0.04939 0.55354 2.04799
Coefficients:
Estimate Std. Error t value Pr(>|t|)
x 0.02074 0.02091 0.992 0.3242
factor(hh)1 0.42199 1.23666 0.341 0.7338
factor(hh)2 3.28983 2.13807 1.539 0.1279
factor(hh)3 2.03885 1.29899 1.570 0.1205
factor(hh)4 -0.04206 1.76677 -0.024 0.9811
factor(hh)5 1.35361 1.66023 0.815 0.4173
factor(hh)6 2.23154 2.09174 1.067 0.2893
factor(hh)7 1.15479 2.22085 0.520 0.6045
factor(hh)8 1.89022 1.82165 1.038 0.3026
factor(hh)9 1.69977 1.08653 1.564 0.1217
factor(hh)10 0.13792 1.39953 0.099 0.9217
factor(hh)11 2.08666 1.59751 1.306 0.1953
factor(hh)12 3.32583 2.17439 1.530 0.1301
factor(hh)13 0.42660 1.30526 0.327 0.7447
factor(hh)14 2.01231 1.37218 1.467 0.1465
factor(hh)15 1.17111 2.02207 0.579 0.5641
factor(hh)16 0.65131 2.11591 0.308 0.7590
factor(hh)17 0.61402 1.23604 0.497 0.6207
factor(hh)18 1.52889 1.54745 0.988 0.3262
factor(hh)19 3.31083 1.35887 2.436 0.0171 *
factor(hh)20 1.32804 1.28584 1.033 0.3048
factor(hh)21 1.60542 1.83424 0.875 0.3841
factor(hh)22 0.42109 1.04698 0.402 0.6886
factor(hh)23 -0.75640 0.95010 -0.796 0.4283
factor(hh)24 2.29574 1.47317 1.558 0.1231
factor(hh)25 1.60669 1.22737 1.309 0.1943
factor(hh)26 1.27090 0.94340 1.347 0.1818
factor(hh)27 2.87945 1.34305 2.144 0.0351 *
factor(hh)28 0.24110 2.22152 0.109 0.9139
factor(hh)29 1.22742 0.90216 1.361 0.1775
factor(hh)30 -0.40464 2.11456 -0.191 0.8487
factor(hh)31 0.96733 2.05219 0.471 0.6387
factor(hh)32 2.00557 1.62621 1.233 0.2211
factor(hh)33 2.17390 0.91359 2.380 0.0197 *
factor(hh)34 0.35526 1.47703 0.241 0.8105
factor(hh)35 0.65333 2.05219 0.318 0.7511
factor(hh)36 0.04396 1.11401 0.039 0.9686
factor(hh)37 1.53936 1.90730 0.807 0.4220
factor(hh)38 2.66710 1.62099 1.645 0.1039
factor(hh)39 2.34282 2.12934 1.100 0.2746
factor(hh)40 1.47991 1.99132 0.743 0.4596
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.9819 on 79 degrees of freedom
Multiple R-squared: 0.9371, Adjusted R-squared: 0.9045
F-statistic: 28.71 on 41 and 79 DF, p-value: < 2.2e-16
## we have a specific constant for each statistical unit. It captures its specific characteristic, fixed
across time.
Fixed Effects Estimator
Model: Within
> z2 <- plm(l~x, model=”within”, data = liq)
## plm is a package for R which intends to make the estimation of linear panel models. It provides
functions to estimate a wide variety of models and to make (robust) inference.
> summary(z2, robust = FALSE)
Oneway (individual) effect Within Model
Call:
plm(formula = l ~ x, data = liq, model = “within”)
Balanced Panel: n = 40, T = 3, N = 120
Residuals:
Min. 1 Qu. Median 3 Qu. Max.
st rd
-1.667853 -0.548685 -0.049386 0.553542 2.047993
Coefficients:
Estimate Std. Error t-value Pr(>|t|)
x 0.020742 0.020908 0.9921 0.3242
Total Sum of Squares: 77.107
Residual Sum of Squares: 76.159
R-Squared: 0.012305
Adj. R-Squared: -0.48779
F-statistic: 0.984166 on 1 and 79 DF, p-value: 0.3242
Model: Between
Only average data are available, averaged over the three years.
> z3 <- plm(l~x, model="between", data = liq)
> summary(z3, robust = FALSE)
Oneway (individual) effect Between Model
Call:
plm(formula = l ~ x, data = liq, model = "between")
Balanced Panel: n = 40, T = 3, N = 120
Observations used in estimation: 40
Residuals:
Min. 1st Qu. Median 3rd Qu. Max.
-1.962009 -0.845070 0.070112 0.700949 2.005886
Coefficients:
Estimate Std. Error t-value Pr(>|t|)
(Intercept) 0.9163337 0.5524439 1.6587 0.1054111
x 0.0273213 0.0074764 3.6544 0.0007757 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Total Sum of Squares: 53.741
Residual Sum of Squares: 39.766
R-Squared: 0.26004
Adj. R-Squared: 0.24057
F-statistic: 13.3544 on 1 and 38 DF, p-value: 0.00077572
Model: Random Effects Model
model the intercepts α were considered to be “fixed” parameters. In the random
In the fixed-effects
effects model we assume that all individual differences are captured by the intercept parameters,
but we also recognize that the individuals in our sample were randomly selected, and thus we treat
the individual differences as random rather than fixed.
The β and variance σ 2
are random drawings with mean
1i 1
> z4 <- plm(l~x, model="random", data = liq)
> summary(z4, robust = FALSE)
Oneway (individual) effect Random Effect Model
(Swamy-Arora's transformation)
Call:
plm(formula = l ~ x, data = liq, model = "random")
Balanced Panel: n = 40, T = 3, N = 120
Effects:
var std.dev share
idiosyncratic 0.9640 0.9819 0.571
individual 0.7251 0.8515 0.429
theta: 0.4459
Residuals:
Min. 1st Qu. Median 3rd Qu. Max.
-2.263634 -0.697383 0.078697 0.552680 2.225798
Coefficients:
Estimate Std. Error z-value Pr(>|z|)
(Intercept) 0.9690324 0.5210052 1.8599 0.0628957 .
x 0.0265755 0.0070126 3.7897 0.0001508 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Total Sum of Squares: 126.61
Residual Sum of Squares: 112.88
R-Squared: 0.1085
Adj. R-Squared: 0.10095
Chisq: 14.3618 on 1 DF, p-value: 0.00015083