Anteprima
Vedrai una selezione di 4 pagine su 11
Appunti Aerodinamica e gestione termica del veicolo - 3 Pag. 1 Appunti Aerodinamica e gestione termica del veicolo - 3 Pag. 2
Anteprima di 4 pagg. su 11.
Scarica il documento per vederlo tutto.
Appunti Aerodinamica e gestione termica del veicolo - 3 Pag. 6
Anteprima di 4 pagg. su 11.
Scarica il documento per vederlo tutto.
Appunti Aerodinamica e gestione termica del veicolo - 3 Pag. 11
1 su 11
D/illustrazione/soddisfatti o rimborsati
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Estratto del documento

BC I

, d

↓ inizial

Edizioni

Galizioni bordo

al

div (F) di Cortesian

sistema riperiment

div1-tE) gad

: p

-

(2M5)

dir l di 245

Ensider riga

prima )

( + (

) +

+

(1(

*

l'hp di integratione

M

Si inversione

Cost olive

fare

può = +

↑ dell

desiste

le in

dir x

sono

l'hp (i)

Facendo di o

= dire)

N

Get

S ↳

= verviene

por

Est

M = ident

++

E C

S -gop sistere

= di

di equazioni

Navier-States

dir (i) =o

I

. ?,

B C

.

. motoriale

devista

delle :

implati

termine

Nel due temini

sono

04/10/24 adkettik

termine

=

I Cost

: )

S :

diffusit

termine

-

2

/Vi gg

god P +

+

i -

dir() = o B

I C C

.

. . .

indipendenti dell

G verskili

↳ dete Pag

Gonat) il

(3

zott e

lineare dal

c'è termine advettivo

termine

un det

non , p)

Abbiamo ↳ G (v

equazioni incognate

in ,

anche tempestiva

Dobbiam di Grides isterem

il

Grodere ampo as son

im

er

3 5

3 ,

,

6 stat

di

T fro anche un'equazione Cost

g

9 aver

P se

,

,

,

Le Eglionci

sol

quindi

Ga pasoro

Le sulle pareti

al bardo

condizioni nelle

sono

yr = sull le di nulle

reblità

Guyonenti

tutte

parte sono

& ,

11 11 19

/ 1 del Erp

di

sist sit

, .

-

si v

i v

= + I

arente d

volsar treCinament

mokch

Y ↳

· a v

=

4

O ↓ principale

Sar

Le di

haso Nord

di Narior-stores al

biogno il

End

agrez non per

. .

di

Cupo pressione . di

Vediamo dei del

signifiato sisteme

tamini

il prima

vosi

Termine livera

odkettito applicazione

che view

le questa

indiova

parentesi

metto per

- Debito

componente

applicataemponente di

al supo

per

[ god) che

i delle Kriskil

c'è

il tenie Guglit produtto

è

. em

,

denista di

moltiglia le stessa

si

Possiamo studiare ande

delle

termine l'equazione

il En

primo

= l le

En incognita agent terre stations

0 e

un non

/

Zamo sabre)

de (D)lé

passat 31 un

a

le

Vogliamo soluzione

trare matematic

41)

f(x)

T( A)

T , a

e che

di

= sole varalle

= un

= x quizione

- un

,

↓ delle due di

Combinazione prima

Coordinate denista nel

le tempo

facendo inX

e :

-

1

71

-

S

istante f X S

[ ut

1x =

b

Qualsiasi Cord Viene

si init es

.

. le postne

lungo

zostata

prese e (attores

del

Il sol termine le

odvetto è de

il

I

tazatore Gryo

En

veblità

in

+ 0

Termine Visoso

=

I vendiamo nondimensione

= a Int

Se il dell

abbiamo problema

1 obre

del

~ diqusione una

su

Sc stana

diquinta

termica

T 0

=

T 0

= L -

T(X 0) =

+

C A w

i =

. . , d

A

T(x 1) sin () matematici

= i

per

,

6 d

A tone

fixiemo ,

voi Il vol del diffusio

temie i

M prendere pricchi spolmerli

i ,

a

1 le alta

En

prende regioni QSM e

- l

sende

" più

- unione

..... C

I

↓ X

Fluss Passille

di

È fless di

settangolare altezza

dentro 25

Quale Endetto

il un

piamo, ami

un e

,

bughezza er traserale

le

plass

dis

Y ,

~ heil Seminare

flusso stazionario

CD

= e

es -

n (Fully desebped)

1 flusso

2) Completamente

. sviluppat le

tutte

:

statistiche lugo X

del Variano

flusso non

(z 1 le

= eccetto

0 pressione

,

Graitazione delle mesa in 20 La è istante

v ogni

dungle

e in

= 0

n e

+ nulla

i

IIIIII = o

0 2)

(h

> l'equazione

Se che 0

delle atteniamo Quindi

in

chirossimo asM y , .

C dei priani puniforme

X en

sono a

Shilome le 1"Enyamente

Navies-Stokes per

[] Il legi

G e

,

↓ (

dimmic

ha effetto

non

perché Gnx

O :I 491

O(he1) 0 ,

bilnes equez man

del G GT)

, 0

=

=

O ,

,

a nel A = 0

sab

Ar in Y

O 2)

Go

0

(he 2) , destint

le

tutte 0

=

Dettagli
Publisher
A.A. 2024-2025
11 pagine
SSD Ingegneria industriale e dell'informazione ING-IND/07 Propulsione aerospaziale

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher pioteo di informazioni apprese con la frequenza delle lezioni di Aerodinamica e gestione termica del veicolo e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Università degli Studi di Modena e Reggio Emilia o del prof Stalio Enrico.