Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
Elastoplasticity3.1 Question 10
Elastoplasticity in 1D (linear isotropic/kinematic hardening): formulation of the governing equations (in rates) for the time-continuous problem.
Elastoplasticity is a rate-independent phenomenon which is irreversible. When we enter elastoplasticity, we can always apply the principle of virtual displacements:
"Z #L LZ XX T TT TA B σ (ε) dx = δu N q dxδue e0 0ee e e| {z } | {z }F FIe EeT TeTe
Imposing δu = δU C we get:
X XT Te T Te −δU = δU =⇒ R (U ) = F F (U ) = 0C F C FIe Ee E Ie e
The nonlinear system is solved using Newton-Raphson algorithm.
∂F ∂F ∂u ∂FX XTe TeI Ie e Ie= C = C C e∂U ∂u ∂U ∂ue ee eL L Z Z∂F dσ ∂ε dσ E A −110T TIe − −= A B dx = A B B dx = [L α (u u ) ]2 1 e −1 12∂u dε ∂u dε L0 0e e
Advanced computational mechanics 163
distinguish strain in two parts: one elastic and the other plastic ε = ε + ε .
Governing equations for the rate problem:
- e pε̇ = ε̇ + ε̇ additive decomposition of strain
- eσ̇ = E ε̇ elastic law
- p|σ| − | | →φ (σ, λ) = σ (λ) yield function, where λ is the hardening parameter λ̇ = ε̇ λ =yt pR | | ≥ε̇ dt 00
- σ = σ + Hλ linear hardening law, with H hardening modulusy 0
- pε̇ = λ̇ signσ plastic flow rule
- ≤ ≥φ 0, λ̇ 0, φ λ̇ = 0 loading/unloading conditions
Figure 3.1: Linear isotropic hardening behaviour
Determination of the tangent modulus:
∆σ ∆σ ∆σ ∆σ ∆σ ∆σ EHe pE = E = H = =⇒ ∆ε = ∆ε + ∆ε =⇒ = + =⇒ E =t te p∆ε ∆ε ∆ε
E E H E + HtAdvanced computational mechanics 173. Elastoplasticity 3.2. Question 11Determination of the plastic multiplier using the consistency condition:|σ| −φ (σ, λ) = (σ + Hλ)0∂φ ∂φ p− − −φ̇ = σ̇ + λ̇ = signσ σ̇ H λ̇ = signσ E (ε̇ ε̇ ) H λ̇ =∂σ ∂λ− − −= signσ E ε̇ signσ E λ̇signσ H λ̇ = signσ E ε̇ λ̇ (E + H)Enforcing consistency condition φ̇ = 0 we get: E signσ ε̇λ̇ = E + HGoverning equations for the rate problem (linear kinematic hardening):• e pε̇ = ε̇ + ε̇ additive decomposition of strain• eσ̇ = E ε̇ elastic law• |σ − −φ (σ, α) = α| σ yield function, where α is the back stress0•
&palpha;˙ = H ε˙ evolution of the back stress• ∂φp plastic flow ruleε˙ = λ˙ ∂σ• ≤ ≥φ 0, λ˙ 0, φ λ˙ = 0 loading/unloading conditions∂φ ∂φ − −φ˙ = σ˙ + α˙ = sign (σ α) ( σ˙ α˙)∂σ ∂αImposing consistency condition we get: p p p−σ˙ = α˙ =⇒ E (ε˙ ε˙ ) = H ε˙ =⇒ ε˙ (E + H) = E ε˙ =⇒ E− −=⇒ λ˙ sign (σ α) (E + H) = E ε˙ =⇒ λ˙ = sign (σ α) ε˙E + H3.2 Question 11Elastoplasticity in 1D (linear isotropic hardening): formulation of the (strain-driven) incre-mental problem and solution by the return mapping algorithm.In order to face elastoplasticity we need to discretize time in pseudo-time, meaning that we define thetime increment Δt between time instants t
and t . At time t we know all the quantities of ourn n+1 npninterest ε , ε , σ and λ . The evolution process in the step is regarded as strain driven since ann nnincrement of total strain ∆ε is given. The time-continuous constitutive equations are enforced at t ,n+1with time derivatives expressed as difference quotients using values at t and t :n n+1∂(·) ∆(·)=∂t ∆tt n+1Governing equations for the finite-step problem:pn+1 pn+1en+1 |σ | −− φ = (σ + Hλ )ε = ε + ε σ = E ε εn+1 n+1 n+1 n+1 n+1 0 n+1p ≥ ≤∆ε = ∆λ signσ ∆λ 0 φ 0 φ ∆λ = 0n+1 n+1 n+13.2.1 Return mapping algorithmWe initially assume the step is elastic and define the trial elastic quantities:p,trtr p tr tr tr|σ | −σ := σ + E∆ε ε := ε λ = λ φ := (σ +
Hλ )n n 0 nn+1 n n+1 n+1 n+1n+1tr ≤If φ 0, then the step is actually elastic and the trial quantities are the real quantities for t .n+1n+1trIf φ > 0, then the step is elastoplastic; the solution with ∆λ > 0 has to be determined.n+1 p tr p tr− − −σ = σ + E (∆ε ∆ε ) = σ E∆ε = σ E∆λ signσn+1 n n+1n+1 n+1Advanced computational mechanics 183. Elastoplasticity 3.3. Question 12The equation can be rewritten as:tr tr tr tr|σ | |σ | − | |σ |signσ = signσ ∆λ E signσ =⇒ [|σ + ∆λ E] signσ = signσn+1 n+1 n+1 n+1 n+1n+1 n+1 n+1 n+1trSince both E and ∆λ are greater than zero, we can conclude that signσ = signσ . Hence:n+1 n+1tr|σ | |σ |+ ∆λ E =n+1 n+1The yield function must vanish at t :n+1 tr|σ | − |σ | − −φ = (σ +Hλ ) = 0 =⇒ ∆λ E [σ + H (λ + ∆λ)] = 0n+1 n+1 0 n+1 0 nn+1
We conclude that: tr tr|σ | − (σ + Hλ ) φ0 nn+1 n+1∆λ = =E + H E + H
The other quantities at time step t are:n+1 ∆λ E pn+1tr tr tr pn tr− − σ = εσ = σ E∆λ signσ = 1 ε + ∆λ signσ λ = λ + ∆λn+1 n+1 nn+1 n+1 n+1 n+1tr ||σ n+13.3 Question 12Elastoplasticity in 3D (von Mises yield criterion with linear isotropic hardening, associa-tive flow rule): formulation of the governing equations (in rates) for the time-continuousproblem.
We define Lamè constants as: νE Eλ = µ = G =−(1 + ν) (1 2ν) 2 (1 + ν)
The stress state in a point can be written as:σ = 2µε + λε δ (3.1)ij ij kk ijMultiplying the equation by δ we get:ij σ 2µ + 3λkkσ δ =
2µε δ + λε δ δ =⇒ σ = 2µε + 3λε =⇒ = σ = ε = Kε (3.2)ij ij ij ij kk ij ij kk kk kk m kk kk3
Where σ is the mean stress and K is the bulk modulus. Multiplying equation 3.2 by δ and thenm ijsubtracting it from equation 3.1 we get:
σkk− −σ δ = 2µε + λε δ Kε δij ij ij kk ij kk ij3
Defining the deviatoric stress and strain tensors: εσkk kk−− δ e = ε δs = σij ij ij ij ij ij3 3
We can rewrite: 2µ −s = 2µe + + λ K ε δ = 2µeij ij kk ij ij3| {z }=0
The elastic energy density is: 1 1 σ ε 1 ε σ σ ε kk kk kk kk kk hh·W = σ ε = s + δ e + δ = s e + s δ + e δ + δ δ = ij ij ij ij ij ij ij ij ij
ij ij ij ij ij2 2 3 3 2 3 3 9 | {z } | {z } | {z }s =0 e =0 =3hh hh 1 σ ε 1 s σ ε 1 s s σ ε J σ ε kk hh ij kk hh ij ij kk hh 2 kk hh= s e + = s + = + = + = W + Wij ij ij dev vol2 3 2 2µ 3 2µ 2 6 2µ 6
Advanced computational mechanics 193. Elastoplasticity 3.3. Question 12√ −Where J is the second invariant of stress deviator tensor. Von Mises yield criterion reads J c = 02 2√ −3J σ (σ = uniaxial yield stress). In fact, in case of uniaxial stress σ = 0 exceptor, alternatively, 2 0 0 ijfor σ :11 2 1 1 1 4 1 1 12 222 233 2 2−s = σ s = s = σ =⇒ J = s + s + s = σ + + = σ11 11 22 33 11 2 11 11 113 3 2 2 9 9 9 3At yielding σ = σ :11 0 1 p2 −J = σ =⇒ 3J σ = 02 2 0033.3.1 von Mises associative model with linear isotropic hardeningpij• eijε = ε + ε additive decomposition of
strainsij• ehkσ = D ε elastic lawij ijhkq• 32 −φ = s s (σ + Hλ) yield functionij ij 0spij• ∂φ 3 √ ij=ε̇ λ̇ = λ̇ plastic flow rule∂σ 2 3 s sij hk hk2• ≤ ≥φ 0, λ̇ 0, φλ̇ = 0 loading/unloading condition r39 s s 2ij ijpij pij p p2 2λ̇ =ε̇ ε̇ = λ̇ =⇒ λ̇ = ε̇ ε̇ij ij2∥s∥4 2 3vMMatrix notation: λ + 2µ λ λ µ 0 0 D 011 λ λ + 2µ λ 0 µ 0= Dε D = D = =D&sig