Anteprima
Vedrai una selezione di 6 pagine su 25
Appunti Advanced Microeconomics Pag. 1 Appunti Advanced Microeconomics Pag. 2
Anteprima di 6 pagg. su 25.
Scarica il documento per vederlo tutto.
Appunti Advanced Microeconomics Pag. 6
Anteprima di 6 pagg. su 25.
Scarica il documento per vederlo tutto.
Appunti Advanced Microeconomics Pag. 11
Anteprima di 6 pagg. su 25.
Scarica il documento per vederlo tutto.
Appunti Advanced Microeconomics Pag. 16
Anteprima di 6 pagg. su 25.
Scarica il documento per vederlo tutto.
Appunti Advanced Microeconomics Pag. 21
1 su 25
D/illustrazione/soddisfatti o rimborsati
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Estratto del documento

Principal-Agent Model

  1. P is risk neutral and A is risk averse

eL < eH, R1 < R2

eH - PH R2 , R2 > R4

1-PL R4 , PH > PL

A) Symmetric Information

⇒ 1st best contract

Low Effort

Principal's problem: min PLU(w2)+(1-PL)U(w1)

subject to: PLU(w2)+(1-PL)U(w1)-eL ≥ U̅ (PC)

Write ℓ and take ∂ℓ/∂w1=0 & ∂ℓ/∂w2 = 0

⇒ we obtain λ > 0 (PC binding) and λU'(w1)=1 ; λU'(w2)=1 ⇒ w1=w2 ⇒ FIXED WAGE

⇒ λU'(w)=1; w=w̅=U̅

⇒ actual risk sharing since P bears the whole risk : R2-R4

High Effort

Principal's problem: min PHU(w2)+(1-PH)U(w1)

subject to: PHU(w2)+(1-PH)U(w1)-eH ≥ U̅

Write ℓ and take ∂ℓ/∂w1 = 0 & ∂ℓ/∂w2 = 0

⇒ obtain λ > 0 and λU'(w2) = 1 ⇒ w1 = w2 = w*

to find w* substitute N = λU'(w*)

into PC and solve for U*( = eL)

⇒ < U̅ = w̅* = w̅H ⇒ FIXED WAGE

⇒ since RL > eL we get U*(eH) > U*(eL)

P will choose the contract based on his net expected profit = E[R̅ - w̅*(e)]

1) If E[R̅|eH] - w*(eH) > E[R̅|eL] - w*(eL), then the

1st best contract is [high effort, w*(eH)]

2) If E[R̅|eH)] - w*(eH) < E[R̅|eL] - w*(eL), then the

1st best contract is [low effort, w*(eL)]

(b) Asymmetric Information -> 2nd best contract

Low effort

  • null contract or sign symmetric info
  • since there's no incentive to deviate

E^h = μL(w(E^h)) - eL > μL(w(eL)) - eL

High Effort -> moral hazard problem

s.t.

μH(w(EH)) - eH < μL(w(eH)) - eL

Principal's problem: min Aw1u1 + (1-pH)w2

s.t. pHλ(u2) + (1-pH)μ(u2) = \bar{\pi}\ \bar{\pi} >

pHW(w2) + (1-pH)u(W + w2) - eH 2μ[u2]< -eL -pHμ(u(W))-eL

Write L and take λ

  • we obtain \lambda > 0 μ > 0 (PC & IC binding)

FDC becomes:

μ^L(w2) = + μ{1 −

μ(W2) = λ + μ[1 − pL

Given that pH > PL we

FDC:

μ^L(W2) E[R(E^L]- W^*(E^L), the 2nd best contract is

  • If E < E[R(E^L)- W^*(E^L), the 2nd best contract is U^a(E^L)
  • Agency cost paid by p

    AC = E[W~^ˉ - W^*(E^H)

    deadweight loss

    s is worse off while A is not better off

    E[R̅-W̅|eH] > E[R̅-W̅|eL]

    1/3 (X1-16) + 2/3 (X2-100) > X1-161/3 (X2-100) - 2/3 (X1-16) > 02X2 - 200 - 2X1 - 32 > 02(X2-X1) > 168   ⇒ X2-X1 > 84 ⇒ H = 84

    c) If X2-X1 = 100 ⇒ eH is the 2nd best contract

    AC = 1/3 .16 + 2/3 .100 - 64 = 8

    CREDIT RATIONING - CONFLICT BTW LENDER & BORROWER

    Project's value = XH XH > XL

    EL(X) = PHXH + (1-PH)XL

    • Bank's payoff = RB
    • 1-PH ¯̅ ¯̅ ¯̅ ¯̅
    • Borrower's ¯̅ ¯̅ ¯̅ ¯̅ RF
    • (firm)

    1- PH ¯̅ ¯̅ ¯̅ ¯̅ ¯̅

    Bank is risk-averse ⇒ bank's RB = min(D(u+t), X¯̅ )

    Firm is risk lover ⇒ firm’s RF = max(X¯̅ - D(u+t), 0)

    credit rationing with MORAL HAZARD (B.I & F riskneutral) PROJECTS' VALUE

    Firm is self funded (no debt)

    ⇒ It selects project X¯̅ since it has a higher expected value (less risky) ⇒ efficient choice

    CREDIT MKT

    Type I

    • 0.9 X1 = 10
    • 0.1 X2 = 7

    π = type I / type I + type II = 0.4

    Type II

    • 0.8 Y1 = 12
    • 0.2 X2 = 4

    Firm borrows only if E[value asset - D(1 + r)] ≥ 1

    a) D = 8 r = 10% ⇒ D(1 + r) = 8.8

    E(X) = 0.9 (10 - 8.8) = 1.08 ⇒ type I borrows

    E(Y) = 0.8 (12 - 8.8) = 2.56 ⇒ type II borrows

    Expected value of loan for bank = 0.4[0.9·8.8 + 0.1·7] + 0.6[0.8·8.8 + 0.2·4] = 8.15

    b) D = 8 r = 12% ⇒ D(1 + r) = 8.96

    E(X) = (10 - 8.96)·0.9 = 0.936 < 1 ⇒ type I doesn't borrow anymore

    E(Y) = (12 - 8.96)·0.8 = 2.432 > 1 ⇒ type II still borrows

    Expected value of loan for bank = 0.8·8.96 + 0.2·4 = 7.968

    ⇒ the expected value for the bank decreases ⇒ it’s not convenient for the bank to increase r since it will end up lending only to the riskier individuals

    ⇒ despite the nominal value of the credit increase, the expected return decreases

    Unfair premium

    p > π L (when mkt is not competitive)

    u'(w2)

    T(L-p) / (1-π) p < λ ⇒ u'(w1) ≥ u'(w2)

    Partial insurance

    • Solve for α & λ ⇒ y2-αp > y2 + α(L-p) and find that α* < 1

    Partial insurance leads to an increase of expected utility but lower than under full insurance

    E[u(wj)] > E[u(q)]

    E[u(w)] = utility without insurance

    E[u(wj)] = μ E(q)

    Maximum price a risk-averse individual is willing to pay for full insurance ( α = 1 )

    Indifference condition

    u(y1-p*) = E[u(q)] ⇒ u(y1-p*) = (1-π)u(y1) + π u(y2)

    p* = reservation price

    Assume sells for p ≤ p*

    Consumer buys for p ≤ p*

    Consumer doesn't buy for p > p*

    Is it fair?

    u(y1-p*) = E0u(q)

    y1-p* ≤ E2y ⇒ y1-p* ≤ y1-π L

    p* > π L

    E[u(w)] > E[q] = π u(y2) + (1-π)u(y1)

    μ E[q] = μ [π y2 + (1-π) y4]

    E[u(q)] < μ E[q]

    Dettagli
    Publisher
    A.A. 2021-2022
    25 pagine
    SSD Scienze economiche e statistiche SECS-P/01 Economia politica

    I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher chiaratrova97 di informazioni apprese con la frequenza delle lezioni di Advanced microecomics e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Università Cattolica del "Sacro Cuore" o del prof Baglioni Angelo.