francesco.speciale
Ominide
1 min. di lettura
Vota 4,2 / 5

L'area di un triangolo rettangolo isoscele misura

[math]128 cm^2[/math]

.
Calcola il perimetro del triangolo.

Soluzione

Figura triangolo rettangolo isoscele

Dati

[math]ccA=128cm^2[/math]

[math]\bar(AB)=\bar(AC)[/math]

Svolgimento
L'area del triangolo è data dalla formula

[math]ccA=(\bar(AB) \cdot \bar(AC))/2=128 cm^2[/math]

Poniamo

[math]\bar(AB)=\bar(AC)=x[/math]

, e sostituendo si ha

[math](x^2)/2=128 cm^2[/math]

risolviamo la seguente equazione di secondo grado

[math](x^2)/2=128 cm^2[/math]

;

[math]x^2=2 \cdot 128 cm^2[/math]

;

[math]x^2=256 cm^2 -> x=\sqrt{256} cm=16 cm[/math]

.
Quindi

[math]\bar(AB)=\bar(AC)=16 cm[/math]

Per il Teorema di Pitagora si ha

[math]BC=\sqrt{(\bar(AB))^2+\bar(AC)^2}=\sqrt((16 cm)^2+(16 cm)^2)=\sqrt(256+256) cm=\sqrt(512)cm=22,63 cm[/math]

.
Pertanto

[math]2p=\bar(AB)+\bar(AC)+\bar(BC)=(16+16+22,63) cm=54.63 cm[/math]

.

Domande e risposte