Anteprima
Vedrai una selezione di 1 pagina su 2
Matematica - PNI Pag. 1
1 su 2
Disdici quando vuoi 162x117
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Sintesi
In PDF!
Estratto del documento

Pag. 1/2 Sessione ordinaria 2006

Seconda prova scritta

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO

CORSO SPERIMENTALE

PIANO NAZIONALE INFORMATICA

Tema di: MATEMATICA

Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario.

PROBLEMA 1 λ viene utilizzato per delimitare il perimetro di un’aiuola

Un filo metallico di lunghezza

rettangolare.

a) Quale è l’aiuola di area massima che è possibile delimitare?

Si pensa di tagliare il filo in due parti e di utilizzarle per delimitare un’aiuola quadrata e un’altra

circolare. Come si dovrebbe tagliare il filo affinché:

b) la somma delle due aree sia minima?

c) la somma delle due aree sia massima?

Una aiuola, una volta realizzata, ha la forma di parallelepipedo rettangolo; una scatola, cioè, colma

di terreno. Si discute di aumentare del 10% ciascuna sua dimensione. Di quanto terreno in più, in

termini percentuali, si ha bisogno?

PROBLEMA 2 ( )

( ) = = 2

f x log x

Si considerino le funzioni f e g determinate da e g x ax , essendo un parametro

a

reale e il logaritmo in base e. = 2

a , log x ax e si dica, in particolare, per quale valore di

l’equazione

1. Si discuta, al variare di

i grafici di f e g sono tra loro tangenti.

a = − 2 g

f

Si calcoli, posto a e , l’area che è compresa fra i grafici di e (con x > 0) nella striscia

2. = − = −

y y

1 2

.

di piano determinata dalle rette d’equazioni e 1

= − 2

Si studi la funzione h ( x ) log x ax scegliendo per un valore numerico maggiore di

3. e

a 2

e

se ne disegni il grafico.

Dettagli
Publisher
2 pagine
3618 download