Il limite si presenta in forma indeterminata
[math]\infty - \infty[/math]
. Si risolve razionalizzando l'espressione
[math]\lim_{n\rightarrow\infty} \sqrt{n^4+n^3+5} - n^2 =[/math]
[math]\displaystyle \lim_{n \rightarrow\infty} \frac{\Big(\sqrt{n^4+n^3+5} – n^2\Big)\cdot \Big(\sqrt{n^4+n^3+5} + n^2\Big)}{\sqrt{n^4+n^3+5} + n^2}=[/math]
[math]\displaystyle \lim_{n\rightarrow\infty} \frac{n^4+n^3+5-n^4}{\sqrt{n^4+n^3+5} + n^2}=[/math]
[math]\displaystyle \lim_{n\rightarrow\infty} \frac{n^3+5}{\sqrt{n^4+n^3+5} + n^2}=[/math]
[math]\displaystyle \lim_{n\rightarrow\infty} \frac{n^3\cdot \Big(1+\frac{5}{n^3}\Big)}{n^2\cdot\Big(\sqrt{1+\frac{1}{n}+\frac{5}{n^4}}+1\Big)}=[/math]
[math]\displaystyle \lim_{n\rightarrow\infty} n\cdot \frac{1+\frac{5}{n^3}}{\sqrt{1+\frac{1}{n}+\frac{5}{n^4}}+1}=+\infty[/math]