Indice
Proprietà dei limiti
Se
Tavola dei limiti notevoli
Razionali
Esponenziali e logaritmici
|
[math]\lim\limits_{x \to +\infty} (1 + \frac{1}{x})^x = e[/math] |
[math]\lim\limits_{x \to -\infty} (1 + \frac{1}{x})^x = e[/math] |
[math]\lim\limits_{x \to \pm\infty} (1 + \frac{a}{x})^{x} = e^{a}[/math] |
|
[math]\lim\limits_{x \to \pm\infty} (1 + \frac{a}{x})^{nx} = e^{na}[/math] |
[math]\lim\limits_{x \to \pm\infty} (1 - \frac{1}{x})^x = \frac{1}{e}[/math] |
[math]\lim\limits_{x \to 0} (1 + ax)^{\frac{1}{x}} = e^a[/math] |
[math]\lim\limits_{x \to 0} \log_{a} ((1 + x)^{\frac{1}{x}}) = \frac{1}{\log_{e}(a)}[/math] |
[math]\lim\limits_{x \to 0} \frac{\log_{a} (1 + x)}{x} = \frac{1}{\log_{e}(a)}[/math] |
[math]\lim\limits_{x \to 0} \frac{a^x - 1}{x} = \ln(a)[/math] , [math]\forall a \in \mathbb{R}^+[/math]
|
[math]\lim\limits_{x \to 0} \frac{(1+x)^a - 1}{x} = a[/math] |
[math]\lim\limits_{x \to 0} \frac{(1+x)^a - 1}{ax} = 1[/math] |
[math]\lim\limits_lim_{x \to 0} x^b log_{a}(x) = 0[/math] , [math]\forall b \in \mathbb{R}^+[/math] |
|
[math]\lim\limits_{x \to 0} \frac{\log_{a}(x)}{x^b} = +\infty[/math] , [math]\forall b \in \mathbb{R}^+[/math] , con [math]0
|
[math]\lim\limits_{x \to 0} \frac{\log_{a}(x)}{x^b} = -\infty[/math] , [math]\forall b \in \mathbb{R}^+[/math] , con [math]a > 1[/math]
|
[math]\lim\limits_{x \to +\infty} a^x = 0[/math] , [math]\forall a \in (0,1)[/math]
|
|
[math]\lim\limits_{x \to +\infty} a^x = +\infty[/math] , [math]\forall a \in (1, +\infty)[/math] |
[math]\lim\limits_{x \to -\infty} a^x = +\infty[/math] , [math]\forall a \in (0,1)[/math] |
[math]\lim\limits_{x \to -\infty} a^x = 0[/math] , [math]\forall a \in (1, +\infty)[/math] |
|
[math]\lim\limits_{x \to +\infty} x^b a^x = \lim\limits_{x \to +\infty} a^x[/math] , [math]\forall b \in \mathbb{R}^+[/math] , [math]\forall a \in \mathbb{R}^+ \setminus {1}[/math]
|
[math]\lim\limits_{x \to -\infty} |x|^b a^x = \lim\limits_{x \to -infty} a^x[/math] , [math]\forall b \in \mathbb{R}^+[/math]
|
[math]\lim\limits_{x \to +\infty} \frac{a^x}{x^b} = \lim\limits_{x \to +\infty} a^x[/math] , [math]\forall b \in \mathbb{R}^+[/math] , [math]\forall a \in \mathbb{R}^+ \setminus {1}[/math]
|
|
[math]\lim\limits_{x \to +\infty} \frac{x^b}{a^x} = \lim\limits_{x \to -\infty} a^x[/math] , [math]\forall b \in \mathbb{R}^+[/math] , [math]\forall a \in \mathbb{R}^+ \setminus {1}[/math] |
[math]\lim\limits_{x \to -\infty} e^x x^b = 0[/math] , [math]\forall b \in \mathbb{R}^+[/math] |
Goniometrici e iperbolici
|
[math]\lim\limits_{x \to 0} \frac{\sin(x)}{x} = 1[/math] |
[math]\lim\limits_{x \to 0} \frac{\sin(ax)}{bx} = \frac{a}{b}[/math] |
[math]\lim\limits_{x \to 0} \frac{\sin(ax)}{\sin(bx)} = \frac{a}{b}[/math] |
|
[math]\lim\limits_{x \to 0} \frac{\tan(x)}{x} = 1[/math] |
[math]\lim\limits_{x \to 0} \frac{\tan(ax)}{bx} = \frac{a}{b}[/math] |
[math]\lim\limits_{x \to 0} \frac{\tan(ax)}{\tan\(bx)} = \frac{a}{b}[/math] |
[math]\lim\limits_{x \to 0} \frac{1 - \cos(x)}{x} = 0[/math] |
[math]\lim\limits_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}[/math] |
[math]\lim\limits_{x \to 0} \frac{\arcsin(x)}{x} = 1[/math] |
[math]\lim\limits_{x \to 0} \frac{\arcsin(ax)}{bx} = frac{a}{b}[/math] |
[math]\lim\limits_{x \to 0} \frac{\arcsin(ax)}{\arcsin(bx)} = \frac{a}{b}[/math] |
[math]\lim\limits_{x \to 0} \frac{\arctan(x)}{x} = 1[/math] |
|
[math]\lim\limits_{x \to 0} \frac{\arctan(ax)}{bx} = \frac{a}{b}[/math] |
[math]\lim\limits_{x \to 0} \frac{\arctan(ax)}{\arctan(bx)} = \frac{a}{b}[/math] |
[math]\lim\limits_{x \to 0} \frac{\sinh(x)}{x} = 1[/math] |
|
[math]\lim\limits_{x \to 0} \frac{\sinh(x)}{x} = 1[/math] |
[math]\lim\limits_{x \to 0} \frac{\tanh(x)}{x} = 1[/math] |
[math]\lim\limits_{x \to 0} \frac{\tanh(x)}{x} = 1[/math] |
|
[math]\lim\limits_{x \to 0} \frac{x - \sin(x)}{x^3} = \frac{1}{6}[/math] |
[math]\lim\limits_{x \to 0} \frac{x - \arctan(x)}{x^3} = \frac{1}{3}[/math] |
Link utili
http://it.wikipedia.org/wiki/Tavola_dei_limiti_notevoli