_Steven
Ominide
1 min. di lettura
Vota 3,8 / 5

Concetti Chiave

  • Nelle molle collegate in serie, la forza applicata è la stessa per entrambe e determina allungamenti distinti.
  • Le costanti elastiche delle molle sono indicate come k_a e k_b, ognuna con un proprio allungamento.
  • L'allungamento totale del sistema è la somma degli allungamenti delle due molle, x_a e x_b.
  • La costante elastica equivalente k_{eq} è calcolata attraverso la relazione di reciprocità delle costanti elastiche individuali.
  • La formula finale dimostra che \frac{1}{k_a} + \frac{1}{k_b} = \frac{1}{k_{eq}}, semplificando la forza dalla relazione tra gli allungamenti.

In figura si hanno due molle collegate in serie, e una forza

[math]\vec F[/math]

Mostrare che la costante elastica equivalente del sistema così costituito è legata alle altre due costanti secondo la legge

[math]\frac{1}{k_a}+\frac{1}{k_b}=\frac{1}{k_{eq}}[/math]

Abbiamo queste due molle, le cui costanti elastiche sono

[math]k_a[/math]
e
[math]k_b[/math]

Disponendole in serie e applicando una forza

[math]F[/math]
come in figura, si ha che le molle sono entrambe sottoposte a questa forza e avranno allungamento
[math]x_a[/math]
e
[math]x_b[/math]

[math]k_a \cdot x_a=F[/math]

[math]k_b \cdot x_b=F[/math]

volendo trovare la

[math]k[/math]
totale, cerchiamo una
[math]k_{eq}[/math]
tale che:

[math]F=k_{eq} \cdot x_s=k_{eq}(x_a+x_b)[/math]

dal momento che la somma dei due allungamenti corrisponde all'allungamento del sistema.

A questo punto si ha

[math]x_a=\frac{F}{k_a}[/math]

[math]x_b=\frac{F}{k_b}[/math]

[math]x_a+x_b=\frac{F}{k_{eq}}[/math]

dunque:

[math]\frac{F}{k_1}+\frac{F}{k_2}=\frac{F}{k_{eq}}[/math]

semplifichiamo la

[math]F[/math]

[math]\frac{1}{k_a}+\frac{1}{k_b}=\frac{1}{k_{eq}}[/math]

FINE

Domande e risposte

Hai bisogno di aiuto?
Chiedi alla community