vuoi
o PayPal
tutte le volte che vuoi
M
e
u
egy # that super-replicates X (1) is such that:
u u u u
5#
A) # = 5# ; B) # = ;
0 1 0 1
u u u u
3#
C) # = 3# ; D) # = ; E) none of the other answers is correct.
0 1 0 1
||||||||||||||||||||||||||||||||||||||||||||{
2 Given the one-period market (with riskfree rate r = 0)
2 3
1 0:5 1 question 2
answer
to
info useful
6 7 realy
not
This is
-
1+0 4 4 1 1 1
6 7
0 6 7
M = with objective probability masses P (! ) = , P (! ) = and P (! ) = ,
1 2 3
4 5 4 4 2
1+0 0 4
1+0 0 0 2
e e e e e
the no-arbitrage price of the payo Y (1) = 2B (1) + 2 S (1) S (1) S (1) + S (1) is such that:
1 1 2 2
A) Y (0) = 2; B) Y (0) = 3;
C) Y (0) = 4; D) Y (0) > 4; E) none of the other answers is correct.
||||||||||||||||||||||||||||||||||||||||||||{
3 Start from the setup of Question 2 and consider the initial wealth W = 1. Given the risk
h i h i
0
e e
P P
aversion parameter > 0, the strategy # solves the problem max E V (1) V ar V (1) . The
# #
# ;#
1 2
12
strategy # has the same wealth variance of a strategy #, with # = # = , when:
1 2
q p 11
3
A) = ; B) = ;
11 3
q p 11
3
C) = ; D) = ; E) none of the other answers is correct.
22 22
||||||||||||||||||||||||||||||||||||||||||||{
4 Start from the setup of Question 2 and consider the initial wealth W . Among the strategies
0
made of risky securities only, the strategy , expressed in terms of portfolio shares, that minimizes the
wealth variance is such that:
A) = 1; B) = 0;
1 2
C) = 1; D) = 1; E) none of the other answers is correct.
0 2
Alessandro Sbuelz, Andrea Tarelli - SBFA, UCSC - QUANTITATIVE METHODS FOR FINANCE 1
||||||||||||||||||||||||||||||||||||||||||||{
5 Under the objective probability measure P , the underlying stock value dynamics is
dS P
dt
= (r q + ) + dz ;
S
where r is the riskfree rate, q is the dividend yield, is the volatility parameter, is the risk premium
P
( is the market price of risk), and z is a Wiener process under P . S is the positive current stock
value (t is the current date). The European call, the European put, and the futures contract have the same
maturity/delivery date T > t (K is the common strike price of the two options). Their current no-arbitrage
values are c (S; t), p (S; t), and F (S; t), respectively. They are such that:
r(T t) r(T t)
A) c (S; t) = p (S; t) + e F (S; t) e K;
r(T t) r(T t)
B) c (S; t) = p (S; t) + e F (S; t) e K;
r(T t) r(T t)
C) c (S; t) = p (S; t) e F (S; t) e K;
r(T t) r(T t)
D) c (S; t) = p (S; t) e F (S; t) e K;
E) none of the other answers is correct.
||||||||||||||||||||||||||||||||||||||||||||{
6 Start from the setup of Question 5. The digital option with the terminal payo 1 (for
fSKg
!
t T ) has current no-arbitrage value D (S; t), which is such that:
12 P
2 2
dD dt
A) = + S (r q + ) + S + Dqdt + Sdz ;
12 P
2 2
dD dt
B) = + S (r q) + S + Sdz ;
P
dD
C) = E [dD] + Sdt + Sdz ;
t P
dD
D) E [dD] = (=D) Sdz ;
t
E) none of the other answers is correct.
||||||||||||||||||||||||||||||||||||||||||||{
P
dr dt dz
7 Assume the Vasicek model (the short rate r has dynamics = (r r) + under the
r r 6
objective probability measure P with > 0). The market price of interest rate risk is (with = 0) The
r r
zero-coupon bond value B (r; t) with maturity date T > t is such that:
1e
A) B = B ;
rr
1e
B) B = B ;
rr r
e
C) B = B ;
rr r
1e
D) B = B ;
rr r
E) none of the other answers is correct.
||||||||||||||||||||||||||||||||||||||||||||{
8 Start from the setup of Question 7. The zero-coupon bond price B (r; t) with maturity date
T > t is such that: 12 2 2
A) B B (r r) + B = Br ;
t r rr r
12 2
B
B) B (r r) + B = Br;
t r rr r
12 2 2
B
C) B (r r) + B r = Br;
t r rr r
12 2
D) B + B (r r) + B = Br;
t r rr r
E) none of the other answers is correct.
Alessandro Sbuelz, Andrea Tarelli - SBFA, UCSC - QUANTITATIVE METHODS FOR FINANCE 2
-
2
E N M
&
: -
00
* ade
~ -
I
& -
-
E
S ↓
N
. i T
- E E
- T
S
E ↳
M
&
In
↓ -
p I N
r
G F
22
25
= -
E
E
S T
-
-
E &
~
- -
&
E
↓ f I
-
in ↑
- -
- -
-
↓ T
- un + I
= 28
+
M / T O
↓ 00 E &
/
~ ~
T O
~
+ ↑
↑
-
di -m
= T
-
A ?
& D
↑
+
& E
i 9
↑
T
- S
- C ①
E
& & d
nu
↑
* S ↑
y E
-
S -
- - & -
~
W
· &
E su
E &
↓
- /
S E
S
- s
E ~
O -
e E
F
T ↑
- S ↑
f
= -
& & 8
T ·
I ↑ 8
- ↑
=
~ E -
E S L 5
↑
↑
↑ E
z Fr &
M
t
to
- ↑
- / 40
E
e - &
1
↑
↓ /g
~
o P -P
a &
i N
M
- &
-
&
X E
-0
↑ p I -
M
-A i is
&
- f
I
↑
-
S
I & M
-
e -
-
& #
X -
T
↑ p I - =
~
- S
E
Fo ~
- -
~
& & &
~ *
En
S
E X
= -
*
- N
↑ /
&
* 2 3
[2 -2
S S - a
S - &
&
a C
9 1
3 -
-I
I
-
- +
4-
↑
-
↑P .
A 11 -
*
+ &
E -
35
5152 &
& *
· I Is 3
2 S
S
&
T & I
+
3 Il
&
+
-1
& ·
↳
↓
&
S &
& t Il
Il
-
+ &
+ 5 22
E L 42
G - I ⑤
- 5 i
& C - -
&
Il &
s
-
I
& ·
-1 &
-
P s
& ↓
&
G
↑ ↑
& X
- 36
&
↑ ↑
S
& S
& G &
&
⑤ &
Nor
S I
& &
A [
Il ↑ Il
(
&
& *
&
Il
s ↳
S
+ Iy
a
- Il
I - G "g
F G
& y
& &
3 I &
I A
& I · ↓
- I - -
⑧ e
s -
-
G S
&
- S
I S
S I
B
p
Is Process
I
⑮
S Cip
S
Te