Appunti di Algebra lineare.
[cite_start]Questo documento introduce i concetti di spazi vettoriali associati a una matrice $M(n \times m)$[cite: 146, 148].
* [cite_start]Lo spazio nullo $N(M)$ è il sottospazio di $R^m$ formato dalle soluzioni di $M\underline{x}=\underline{0}$[cite: 147, 149, 150].
* [cite_start]Lo spazio delle colonne $C(M)$ è il sottospazio di $R^n$ generato dalle colonne di $M$[cite: 151].
* [cite_start]Lo spazio delle righe $R(M)$ è il sottospazio di $R^m$ generato dalle righe di $M$[cite: 152, 153].
[cite_start]Le relazioni tra le dimensioni dei sottospazi sono date da $dim~N(M) = m - dim~C(M)$[cite: 155]. [cite_start]L'eliminazione di Gauss per ottenere una matrice a scala $S$ associata a $M$ non cambia $N(M)$ o $R(M)$[cite: 163, 164, 165]. [cite_start]Le righe non nulle di $S$ formano una base per $R(M)$[cite: 165, 166]. [cite_start]Sebbene $C(M)$ possa cambiare, la sua dimensione rimane la stessa, e le relazioni di dipendenza lineare tra le colonne si mantengono[cite: 167]. [cite_start]Le colonne di $M$ corrispondenti alle colonne di $S$ con elementi pivot formano una base per $C(M)$[cite: 170, 171].
[cite_start]Viene presentato un esercizio per determinare una base per uno spazio vettoriale $V$ con $dimV=n$ a partire da un insieme di $m$ generatori non nulli $(m \ge n)$[cite: 173, 174]. Vengono forniti quattro vettori $v_1, v_2, v_3, v_4$ e si chiede di:
[cite_start]a) Stabilire se $v_1, v_2, v_3, v_4$ sono generatori di $R^4$ e se ne costituiscono una base[cite: 177].
[cite_start]b) Determinare una base di $V$, lo spazio vettoriale generato da questi vettori, e la dimensione di $V$[cite: 179].
[cite_start]c) Determinare le coordinate di $v_1, v_2, v_3, v_4$ rispetto alla base determinata[cite: 180].
[cite_start]Per il punto (a), si verifica la dipendenza lineare tramite la matrice $M$ formata dalle colonne dei vettori e la si riduce a scala usando l'eliminazione di Gauss[cite: 187, 188, 189]. [cite_start]Le operazioni consentite includono lo scambio di righe, la moltiplicazione di una riga per uno scalare non nullo, e la somma di una riga con un multiplo scalare di un'altra riga[cite: 197, 198, 199]. [cite_start]Se ci sono righe nulle nella matrice a scala, i vettori sono linearmente dipendenti[cite: 220, 221]. [cite_start]Nel caso dato, la matrice a scala ha una riga nulla, indicando che i vettori $v_1, v_2, v_3, v_4$ sono linearmente dipendenti e quindi non formano una base di $R^4$[cite: 220, 221, 230].
[cite_start]Per il punto (b), la base di $V$ è costituita dai vettori linearmente indipendenti tra i generatori[cite: 233, 234]. [cite_start]Dal passo (a), i vettori $v_1, v_2, v_4$ sono linearmente indipendenti e formano una base per $V$, quindi $dimV=3$[cite: 236, 238].
[cite_start]Per il punto (c), si esprime ogni vettore come combinazione lineare della base determinata, trovando i coefficienti che rappresentano le coordinate[cite: 240]. [cite_start]Ad esempio, per $v_1, v_2, v_4$ rispetto a se stessi, le coordinate sono $(1;0;0)^T$, $(0;1;0)^T$, $(0;0;1)^T$ rispettivamente[cite: 242, 243, 244, 246, 248, 249]. [cite_start]Per $v_3$, si imposta un sistema lineare e si risolve per trovare le coordinate $(\lambda_1, \lambda_2, \lambda_4)$, risultando in $(2;-1;0)^T$[cite: 245, 251, 252].
...continua