Anteprima
Vedrai una selezione di 6 pagine su 21
Homework esame Theory of Structures Pag. 1 Homework esame Theory of Structures Pag. 2
Anteprima di 6 pagg. su 21.
Scarica il documento per vederlo tutto.
Homework esame Theory of Structures Pag. 6
Anteprima di 6 pagg. su 21.
Scarica il documento per vederlo tutto.
Homework esame Theory of Structures Pag. 11
Anteprima di 6 pagg. su 21.
Scarica il documento per vederlo tutto.
Homework esame Theory of Structures Pag. 16
Anteprima di 6 pagg. su 21.
Scarica il documento per vederlo tutto.
Homework esame Theory of Structures Pag. 21
1 su 21
D/illustrazione/soddisfatti o rimborsati
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Estratto del documento

Theory of Structures + Stability of Structures

February 4th, 2021

(the solution should be delivered within February 4th, 2021, h. 13:00)

Theory of Structures

Problem T1

The problem is referred to a parabolic arch, whose geometry is depicted in the figure. The material is homogeneous (E = 30 GPa, ν = 0.2) and the keystone section is square (side length 150 cm). The variation of the cross-section properties with respect to the arch inclination is A = A0/cos α, I = I0/cos α, where A0 and I0 are the keystone cross-section area and inertia, respectively. The external load is represented by a concentrated force (P = 150 kN). The student should solve the problem by making use of symbolic variables and, finally, should obtain the numerical values of the reaction forces and the diagrams of shear, axial force and bending moment.

Problem T2

The above figure represents a multi-cellular section with uniform thickness 50 mm (all the measurements are in mm). The students should obtain the stress field for a shear force V = 200 kN, applied in the upper left corner of the middle line. Moreover, the position of the shear center should be computed. G = 18 GPa.

THEORY OF STRUCTURES

PROBLEM T1

Homogeneous MaterialE=30GPa, ν=0.2

Keystone Square Section (A0, I0)

  1. Redundant Structure:
    • Add a redundant action in B substituting the hinge with a roller
  2. Case 0: External Load

Equilibrium

  • ∑H=0 : HA0=0
  • ∑V=0 : VA0+VB0=P → VA0=34P
  • ∑MA=0 : VB0ℓ-Peu=0 → VB0=Pu
  • Check ∑MB=0 : 34Pe-P34e=0 ✓

Focus on a part:

N0=-(34P+P)sinα ze4

T0=-(34P+P)cosα ze4

Mz={½Pz    ze4        [34P + P(z-e4)]    z≥e4

5) Reaction Forces

Once we have computed the HORIZONTAL THRUST x̄ we can compute REACTION FORCES and then internal forces:

EQUILIBRIUM

  • ΣH = 0 : HA = x̄ = 16.1,8 kN
  • ΣV = 0 : VA + VB = P => VA = P - VB = 112.5 kN
  • ΣMA = 0 : VB e - P ℓ e/l = 0 => VB = P/u = 37.5 kN

6) Internal Actions.

N = N0 + N1

T = T0 + T1

M = M0 + M1

con x̄ = -16,1,8 kN

N =

  1. 0 < z < e
  2. e < z < ℓ

N = -3/4 P sinα + x̄ cosα

N = P sinα + x̄ cosα

T =

  1. 0 < z < e
  2. e < z < ℓ

T = -3/4 P cosα - x̄ sinα

T = P/u cosα - x̄ sinα

M =

  1. 0 < z < e
  2. e < z < ℓ

M = 3/4 Pz + y3

M = [Pe/u + Pe/u] z + y3

2) CENTRE OF SHEAR and PURE SHEAR

We starting considering the case of pure shear, shear force applied at centre of shear (that for sure is along y due to symmetry)

To solve this problem we introduce Doorwasy formula which requires the definition of some local abscissa in each laminate and to do this we introduce some fictitious opening.

SHEAR FLUX: q* = Tx/Iy Sy*

  • Sg
  • S8
  • S11
  • S10
  • S7
  • S6
  • S4
  • S3
  • S2
  • Sa
  • * We start computing STATIC MOMENTS Sy*(s)

    1. 0 ≤ S1 ≤ 2000 mm
      • Sy*(S1) = 50 x S1 x (1000 - S1/2)
      • Sy*(S1 = 0) = 0
      • Sy*(S1 = 2000 mm) = 0
    2. 0 ≤ S2 ≤ 350 mm
      • Sy*(S2) = 50 x S2 x 1000
      • Sy*(0) = 0
      • Sy*(350) = 1.75 x 107 mm3
    3. 0 ≤ S3 ≤ 400 mm
      • Sy*(S3) = Sy*(S2 = 350) + 50 x S3 (600 + 600 - S3/2)
      • Sy*(0) = 1.75 x 107 mm3
      • Sy*(400) = 1.95 x 107 + 2.60 x 107 = 3.33 x 107 mm3
    4. 0 ≤ Su ≤ 350 mm
      • Sy*(Su) = 50 x Su x 600
      • Sy*(0) = 0
      • Sy*(350) = 1.05 x 107 mm3

    ASCISSA S6 = ∫06 Sy (Sy) -508,51 mm) (- V Iy ) dSy

    V Iy

    ABSISKA S8: ∫0350 S+ (350mm)(V

    Iy ) dS7 V[.1,8x10-5o22 o = 4,25x106 N mm

    A3SCS Sg:∫0300 (54) Jfys) (s0mm) V dSy - V[.5x10-630obr) =lo

    4,858x106 Nmm

    ABCSIA S10: ∫0400 Sy (Sy)(550mm)(- V Iy )dsy = V [9.X.0-52-29x106Sc2 + 4,81x105301.03 =

    = 9,2524x105 N.mm

    ABSCSSA Né: ∫311200 (5x) (556mm)(- V Iy ) dsy = 1,oY [.. 1,47x10632 1 + 1,381x103511 =3o

    =6,364x109 N.mm

    Now we com go back and espve tw ehte4 of S equations.C: s = 24.8x105mm2 + g28.40x105mm2q92.2x105mm2++f +x105mm, x 7,6112x107mm = 2x005 N.Yc

    I0: 30q1 - 7q2 + 261,26 Nmm = O

    III0: 62 q2- 9q1 - q3 - 26q4 = 493,34 Nmm = O

    IV20: 30q3-79q2 + 261,26Nmm = O

    V0: 58,24-94 -292 + 26b,3Nmm = O

    Pure Shear

    0.2434 0.7516 0.8045

    0.1087 0.8045 0.7516 0.2434

    0.0630 0.2434

    0.3125 0.3903

    0.7385 1.0244 0.7385

    0.3805 0.2903 0.3207 0.3125

    0.7739 0.7739 0.7739 0.7739

    0.8111

    Pure Torsion

    0.4321 0.4321

    q1 q2 q3

    0.4321 0.3122 0.4321

    0.0414

    0.7029 0.7029

    q4

    0.7029 0.7029

    0.7288

    Total

    1.548 1.184

    0.875 0.685

    q1 q2 q3

    0.875 0.685

    0.3805 0.3895

    0.3207 0.3309

    0.8797 0.9638

    q4

    0.8797 0.9638

    0.0786 0.0722

    0.0776 0.0776

Dettagli
Publisher
A.A. 2020-2021
21 pagine
2 download
SSD Ingegneria civile e Architettura ICAR/08 Scienza delle costruzioni

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher Ppaola_ di informazioni apprese con la frequenza delle lezioni di Theory of Structures e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Politecnico di Milano o del prof Ardito Raffaele.