Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
Theory of Structures + Stability of Structures
February 4th, 2021
(the solution should be delivered within February 4th, 2021, h. 13:00)
Theory of Structures
Problem T1
The problem is referred to a parabolic arch, whose geometry is depicted in the figure. The material is homogeneous (E = 30 GPa, ν = 0.2) and the keystone section is square (side length 150 cm). The variation of the cross-section properties with respect to the arch inclination is A = A0/cos α, I = I0/cos α, where A0 and I0 are the keystone cross-section area and inertia, respectively. The external load is represented by a concentrated force (P = 150 kN). The student should solve the problem by making use of symbolic variables and, finally, should obtain the numerical values of the reaction forces and the diagrams of shear, axial force and bending moment.
Problem T2
The above figure represents a multi-cellular section with uniform thickness 50 mm (all the measurements are in mm). The students should obtain the stress field for a shear force V = 200 kN, applied in the upper left corner of the middle line. Moreover, the position of the shear center should be computed. G = 18 GPa.
THEORY OF STRUCTURES
PROBLEM T1
Homogeneous MaterialE=30GPa, ν=0.2
Keystone Square Section (A0, I0)
- Redundant Structure:
- Add a redundant action in B substituting the hinge with a roller
- Case 0: External Load
Equilibrium
- ∑H=0 : HA0=0
- ∑V=0 : VA0+VB0=P → VA0=3⁄4P
- ∑MA=0 : VB0ℓ-Pe⁄u=0 → VB0=Pu
- Check ∑MB=0 : 3⁄4Pe-P3⁄4e=0 ✓
Focus on a part:
N0=-(3⁄4P+P)sinα ze⁄4
T0=-(3⁄4P+P)cosα ze⁄4
Mz={½Pz ze⁄4 [3⁄4P + P(z-e⁄4)] z≥e⁄4
5) Reaction Forces
Once we have computed the HORIZONTAL THRUST x̄ we can compute REACTION FORCES and then internal forces:
EQUILIBRIUM
- ΣH = 0 : HA = x̄ = 16.1,8 kN
- ΣV = 0 : VA + VB = P => VA = P - VB = 112.5 kN
- ΣMA = 0 : VB e - P ℓ e/l = 0 => VB = Pℓ/u = 37.5 kN
6) Internal Actions.
N = N0 + N1 x̄
T = T0 + T1 x̄
M = M0 + M1 x̄
con x̄ = -16,1,8 kN
N =
- 0 < z < e
- e < z < ℓ
N = -3/4 P sinα + x̄ cosα
N = P sinα + x̄ cosα
T =
- 0 < z < e
- e < z < ℓ
T = -3/4 P cosα - x̄ sinα
T = Pℓ/u cosα - x̄ sinα
M =
- 0 < z < e
- e < z < ℓ
M = 3/4 Pz + y3
M = [Pe/u + Pe/u] z + y3
2) CENTRE OF SHEAR and PURE SHEAR
We starting considering the case of pure shear, shear force applied at centre of shear (that for sure is along y due to symmetry)
To solve this problem we introduce Doorwasy formula which requires the definition of some local abscissa in each laminate and to do this we introduce some fictitious opening.
SHEAR FLUX: q* = Tx/Iy Sy*
- Sg
- S8
- S11
- S10
- S7
- S6
- S4
- S3
- S2
- Sa
- 0 ≤ S1 ≤ 2000 mm
- Sy*(S1) = 50 x S1 x (1000 - S1/2)
- Sy*(S1 = 0) = 0
- Sy*(S1 = 2000 mm) = 0
- 0 ≤ S2 ≤ 350 mm
- Sy*(S2) = 50 x S2 x 1000
- Sy*(0) = 0
- Sy*(350) = 1.75 x 107 mm3
- 0 ≤ S3 ≤ 400 mm
- Sy*(S3) = Sy*(S2 = 350) + 50 x S3 (600 + 600 - S3/2)
- Sy*(0) = 1.75 x 107 mm3
- Sy*(400) = 1.95 x 107 + 2.60 x 107 = 3.33 x 107 mm3
- 0 ≤ Su ≤ 350 mm
- Sy*(Su) = 50 x Su x 600
- Sy*(0) = 0
- Sy*(350) = 1.05 x 107 mm3
* We start computing STATIC MOMENTS Sy*(s)
ASCISSA S6 = ∫06 Sy (Sy) -508,51 mm) (- V Iy ) dSy
V Iy
ABSISKA S8: ∫0350 S+ (350mm)(V
Iy ) dS7 V[.1,8x10-5o22 o = 4,25x106 N mm
A3SCS Sg:∫0300 (54) Jfys) (s0mm) V dSy - V[.5x10-630obr) =lo
4,858x106 Nmm
ABCSIA S10: ∫0400 Sy (Sy)(550mm)(- V Iy )dsy = V [9.X.0-52-29x106Sc2 + 4,81x105301.03 =
= 9,2524x105 N.mm
ABSCSSA Né: ∫311200 (5x) (556mm)(- V Iy ) dsy = 1,oY [.. 1,47x10632 1 + 1,381x103511 =3o
=6,364x109 N.mm
Now we com go back and espve tw ehte4 of S equations.C: s = 24.8x105mm2 + g28.40x105mm2q92.2x105mm2++f +x105mm, x 7,6112x107mm = 2x005 N.Yc
I0: 30q1 - 7q2 + 261,26 Nmm = O
III0: 62 q2- 9q1 - q3 - 26q4 = 493,34 Nmm = O
IV20: 30q3-79q2 + 261,26Nmm = O
V0: 58,24-94 -292 + 26b,3Nmm = O
Pure Shear
0.2434 0.7516 0.8045
0.1087 0.8045 0.7516 0.2434
0.0630 0.2434
0.3125 0.3903
0.7385 1.0244 0.7385
0.3805 0.2903 0.3207 0.3125
0.7739 0.7739 0.7739 0.7739
0.8111
Pure Torsion
0.4321 0.4321
q1 q2 q3
0.4321 0.3122 0.4321
0.0414
0.7029 0.7029
q4
0.7029 0.7029
0.7288
Total
1.548 1.184
0.875 0.685
q1 q2 q3
0.875 0.685
0.3805 0.3895
0.3207 0.3309
0.8797 0.9638
q4
0.8797 0.9638
0.0786 0.0722
0.0776 0.0776