Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
GAME THEORY
MERCOLEDÌ
- T. Ø. 2
- T. 1. 3.
- 10:15 - 12:15
MARTEDÌ
- N. Ø. 3
- prof office
- 16:15 - 18:15
GIOVEDÌ
- B. 2. 1 A-M
- B. Ø. N-Z
- 16:15 - 18:15
B
- 14:15 - 16:15
- B. 2. 1
- 16:15 - 18:15
VENERDÌ
- S. Ø. 5
- 15:15 - 18:15
1. INTRODUCTORY EXAMPLES
Exercise 2
- 2 PLAYERS
- FINITE
- COMPLETE INFORMATION
- NO CHANCE MOVE
- NO DOMINATED STRATEGIES ELIMINATION
- NO BACKWARD INDUCTION
I II deviate not
- deviate (-1,-1) (1,10)
- not (10,1) (-10,-10)
deviate not crash NO NEED: -2
deviate not crash NEEDED: +1
not deviate not crash: +10
not deviate crash: -10
COORDINATION is NEEDED
Exercise 3
- 1) DECISION THEORY
- 2 PLAYERS
- FINITE
- PERFECT INFORMATION
(a)
I ----------------- | | BACH STRAWINSKI (10,10) (2,5) (2,-5) (5,-10) | | | HOME STRAWINSKI HOME (5,2) (5,5) (5,-10) (10,7)X = { HOME ALONE, BACH TOGETHER, BACH ALONE,
STRN. TOGETHER, STRN. ALONE, HOME TOGETHER }
u(X) = [-10 , +1.0 , +2 , +5 , -5]
GO to BACH: 10
GO to STRAWINSKI: 5
NOT GO: 0
(iii)
- 2 PLAYERS
- FINITE
- COMPLETE INFORMATION
- NO CHANCE MOVE
GAME
NO ELIMINATION OF DOMINATED STRATEGIES
NO BACKWARD INDUCTION
(10,10) (-2,-5) (-5,-2) (5,5)
Exercise 6
Whatever I offer, player II accepts my offer → I offer him 1 €.
ELIMINATION OF DOMINATED STRATEGY: II will always accept!
BACKWARD INDUCTION: I know that II will always accept!
- 2 PLAYERS
- FINITE
- PERFECT INFORMATION
- NO CHANCE MOVE
2. GAMES IN EXTENSIVE FORM
Ex. 8
1) Father offers Alice 2 identical objects.
- 2 players
- finite
- no chance move
- perfect information
INDIFFERENCE IN BACKWARD INDUCTION!
WEAKLY DOMINATED STRATEGIES ELIMINATION: LEADS TO THE SAME INDIFFERENCE
2) FATHER OFFERS ALICE 1 object:
A: {0,1} B: {aa, am, ma, mm}INDIFFERENCE IN BACKWARD INDUCTION!
Ex. 19
Can remove {1,2,3,4,5,6,7}
- 2 players
- finite
- perfect information
- no change move
- zero-sum game
- win/loose, no tie
- normal play rule
P P N N N N N N N N P P
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
P positions = {m ∈ ℕ / m mod 7 = 0} = 0, m.zero = m ∈ ℕ
→ 31 chips = initial position ⇒ It is a N position ⇒ Player I wins and Player II loses;
A winning strategy is 31 ➞ 28 ... {27,26,25,24,8,22} ⇒ 24 ➞ {20,19,18,17,16,15,14} ➞ 7 ➞ 0
P N N N N P N P
{13,12,11,10,8} ➞ {1,2,3,4,5,6} ➞ 0 ➞ win!
N P P N I P
Ex. 21
Nim game :
- 2 players
- finite, perfect information
- zero-sum game
- normal play rule
- no change move
Finite position: (8,5,13,2)
1) It is a N-position :
8 = 1000 ₊ᴺ
5 = 0101 ₊ᴺ
13 = 1101 ₊ᴺ
2 = 0010 =
0010 = 2 ≠ θ ⇒ (x\xcZx.zhBhcomBouton) It is a N-position.
2) The only possible winning strategy is to bring to (8,5,13,0), which is a P-position (xZ.xcBx.khxBouton).
Ex. 22
Rules: n coins ; you can turn over one coin and, if you want, another coin to the left
Initial position : T H T T H T T H T H T H T H
1 2 3 4 5 6 7 8 9 10 11 12 13
i) This is (?)NIM ➞ ...
- 2
- 5
- 9
- 12
Ex. 23 (B)
B =
3 2 1 0
0 1 2 0
1 0 2 1
3 1 2 2
2 players
zero-sum
Dominated strategies:
No elimination
Maxmin and Cominvetive values:
vIe = max {0, 0, 0, 1} = 1
vIIe = min {3, 2, 2, 2} = 2
There are no equilibria in pure strategies.
I can't say nothing about MIXED strategies (except that there exists at least one equilibrium).
Ex. 33:
A =
6 0 5 3
1 5 8 4
2 players
fruit
zero-sum game
Strictly dominated strategies:
(6 0 3)
(1 5 4)
Cominvetive values of the players:
(6 0 5 3) 0
(1 5 8 4) 1
No equilibria in pure strategies.
I can reduce the matrix to:
(6 0 3)
(1 5 4)
If I play ri with positive probability both rows (ρ ∈ (0,1) ) An optimal strategy for player II is, and that
6qI + 0q2 + 3 (1-qI-q2) = q1 + 5q2 + 4 (1-qI-q2)
(9q1 q2, 1-qI-q2) 3qI+q2 =
3qI-3q2 +3 = -3qI + 9q2 + 4
6qI - 4q2 + 1 = 0 (C).
5. GAMES IN STRATEGIC FORM
Ex. 43
confess not confess confess (-5,-5) (0,-7) not confess (-7,0) (-1,-1)
This is a 2 players, finite, with complete information, no chance move, non-zero-sum, (non-cooperative) game. Let's try elimination of dominated (strictly) strategies. We obtained Nech Equilibria in pure strategies:
(-5,-5) (0,-7) (-7,0) (-1,-1)
(1,0),(1,0) is the strategy profile which provides a Nash Equilibrium. Looking for correlated equilibria:
- x + y + z + t = 1
- x = y
- 2x = y
- x+2y+z+t=1
- x>-y/2
- y=-z/2
- Since (1,0),(1,0) is a N.E. profile
x = 0 | x+z=1 ( x 0) t >= 0 | x >= 0 (0 0) z >= 0 | t >= 0 y = 0 |
is a C.E.
Ex. 44
(5,4) (1,6) (0,3) (5,1) (15,3) (3,2) (1,0) (4,3) (2,5) (4,0) (1,5) (2,1)
Nash Equilibria in pure strategies are: ( (0,4,0),(4,0,0,0) ) ( (0,0,1),(0,0,2,0) )
Ex. 48
(2,0) (1,3) (0,1) (3,2)
Nash Equilibrium in pure strategies is: ((0,1),(0,1))
let's see if
(1/3,1/3,1/3) ∈ BR1(y/3) :
if a = z :
y = (9,4,-9,0) ; Let's suppose x ∈ BR1(y/3) ⇒ {2q+(1-9) = bq+(1)(1-9) ⇒
{2q+(1-4) = 2q+(1-9) ⇒
q = 2/b ⇒ b = 2/q ; q = 2/b = 1 ; (b ≥ 2 or b ≤ 1) (b ≥ 2) ∩ (b > 0)
So in the case (z - b/b z z) ∩ (b z z) :
(x, 1 - 2/b y y/3) is ∈ N.E.
if a > 2 : y = (-3, 0, 1, 0) ; If x ∈ BR1(y) ⇒ {1 = -1
1 = 1 FALSE
if a < 2 :
y = (1, 0, 0) ; If x ∈ BR1(y) ⇒ b = -2
b = 2
So in the case (a < 2) ∩ (b = z) :
(x, (1, 0, 0, 1)) is ∈ N.E.
3. b = 1 :
(x, 0, 0)/(0, 0, 0)
y 0
x = 1 :
2 1 -2
1 9 2
2 1 0
{@2x ≥ x/3x ≥ 2x
ok ⇒ θ ≥ 0
ok ⇒ θ ≥ 0
x = 3 :
2y + z ≥ 2y + z
24 + 2 ≥ 14 - z
surge 0
z = -2y 4
if y ≤ y
y = -z
2y ≥ 0
j = 1 :
1 1 1
1 3 θ
1 0 1
2 1 2
{@ 3x ≥ x +y ⇒ 2x ≠ y
3x ≥ x +2y
2x ≥ 2y
{@ j = 2 :
z ≥ 0
z ≥ 2z
z ≥ 0
j = θ ≥ 0
j = 3 :
0 2 0
0 2 0
A C E is :
x, 0, 0/0 0 0 with x ≥ y
-Ex. 62.
-
The N.E. in pure strategies are :
if (a ≥ z) : ((1, 0, 0), (1, 0, 0)) with outcome (2, 2)
if (b ≤ 6) : ((0, 1, 0), (0, 1, 0)) with outcome (5, 6)
-
x = (/4
4, 4, z)
BRa(x) :
ER(1, y1) = 2/1 = 4
2 + b/4 = 3
Ex(x, y2) = 2 1/4 = 4/4 =⇒ 3 = 2
5 = 5 ⇒ 1
Ex(x, y3) = 1/4 + 5/2 = θ b + 4/0
y (x, 0 (0, 9 - 1, 4)
0, y y y = 2
²/6 + 4/4 · b + θ -4
1. 1-9 + 3 - 4 + 5 (1-9) z/9 + b/4 + b/4
+ 3/2 + 9 + 2fq