Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
The Gibbs Set Ensemble
The Gibbs set ensemble is a set of independent systems represented in different points of phase space, each with a density distribution function (coincided unless for a constant density distribution). As time goes by, the phase space motion of the gas resembles a collective interaction without collision but on any point. Using the "Lehman" description, we can write the equation of continuity for the gas as:
E(0D) + ∂p/∂t = 0
Writing in terms of p and q using Hamiltonian equations, we got:
∂p/∂t = -∂H/∂q
REMLIOUVILLE THEOSÈ iè since ∂p/∂t = 0, the distribution function is constant along any trajectory in the phase space.
IMPLICATI S: Since we assume the system to be deterministic, the trajectory behaves like an incompressible fluid.
cannottrrarjectozyeach offer andcross a pointthroughcannot the namepass loopit'Arvire closednnsless as .since Eff tenere¥ and zero• ama are,in theahtrnachants phase spaceno .pointscsnhaining theelementan• itsdi shapedqdp changa=p can dpdits dqndpvolumebut ( dqnot = e,toovjectoriassystemsIn theComplex• storagedefendin the phase spaceconditionsthe initialon .thatdemonstrrated itit be( can )frractalbecomes aconstantp• p = papa lui logarithsnpd islnlp ) lnlpi= +. additive(E) )f- ftp.qnotp = ,stileLiouville Shearer walidisThe s• in Mechanicsquantum the phase,quantizedjust becomesspace .canonicalminimo Canonical and* , ensemblenominalgnanca | Grchangecachange onlt andenergyenergy parrticlesdefinitionStatistical entropyof2 .Definition nricrrocanonical ensemblesforconstantwith :energy IT pontinaS ( ofln ST ) := phase spaceProperties : diforadditive SIquantita DIi. =• e., ,S Si Se+= equilibriummacroscopico thefan• ,microstativolume ST the largestof
isequilibriumsnarimizedS atqnantizing34 phasethe space we can,statistical Weightdefine thethe asporzionevolume phaseof of spaceaby microstatoofevpressed the numberit container . generaliUsing 5 when=p we can sethe constantnotis :asenergy§ lupi5 lupi< >=p= -- i beS thedefries through Gibbsalsocanformula : (S WLÉdt )1-ln la insystem of=p== oreÈ )( ST statesthew(E)= - wE lnwn= un- the thatpsnohabilityisrubare theun microstatotheis instate n .statisticalthethatIt le provercon thernmodynsnmietheand entropyentropy definition theofsmo samaare useslsince beGoththeyShing can,Lezione dinamicathe thermohoquantità .distributionGibbs3 . giving definitionbystartLet' ofs aensembleCanonical :CANONICAL ENSEMBLE. ✓Constant volumeSUBSYSTEM Total Eo☐ :energyAMBIENT hasThe inissubsystem En andenergyequilibrium the ambientethermal with .E EE = -ambient naLet' theto " Subsystem"freezes supposenon learning ambienttheat Enenergy , likesitevolvetofree as
statistical ambient weight thedi of: "issubsystemthe "frozentoken .. Entheat energy .towork of expressionWe write wnon ,prestabilite fiend the Subsystemtotheat Enenergy. A'A constantDTun := 'è the' ambienta entropy ofS=: 'S ' siln= S'()E E= - n. seriesTaylor'5Ecpanding assumingas a ,EEn « :• È(( leis' S'Eni Èe)= -- ?. e.' En5 )( e Tf- temperatura= -:.'èA=un "è "Eest Ed ÈA constant= which intoÈ you"A e-= CANONICALI DISTRIBUTION(GIBBSPartition4 function the canonicalin. ensemble distributionGibbstheGiven Èe-A=un nommalizationimpose thewe cancondition calcolate Constantand theabhainingA :, Èe-EZla = = partitioncanonicaleiswhich called "function withindicato theand"-2lettere "" Zustansumrnefrom the german, .contorniThis Z theallfunction aboutmicroscopio information thesystem writeallowing to the meamus,
Il tuo compito è formattare il testo fornito utilizzando tag html. ATTENZIONE: non modificare il testo in altro modo, NON aggiungere commenti, NON utilizzare tag h1; Il testo formattato con i tag html è il seguente:quantitaphpsicalofvalue as :anyEf- fnun= F-e-E fa¥= alsoIt Med giratobe newcan athedefinition entropyof . formulaStarting from Gibbsthe :wnlnwnES = - ETln Z t= freeHelmholtzIcing the Fenergydefend :asf- E TS= - write :we canf- laitT= - represents betweenthis bridgeathermodynam.ve quantitaa ,Helmholtz freethe energymacroscopici microscopioand the( ,Information Zcontainer ins .alsoWe rredefine Wa :ascan )el=un The distributionBoltzmann for5 . physicsperfecto and itsgasameaningset classicaconsideri perfecta gasus a ,particle whichcompound by haveeachInteraction otherwithno which Maguires thatrvhahsserrern , .the thedilated andpartidos are inponticheofnumber anycvvemage smoller Shanlevel is muckenergy leKa- 1«:ore a . eachIn this consideracase we canparticle isolatocalmati insubsystemas anequilibrium thewith athens .Gibbs distributiontheusewe can psnobalilityWe fore writetheme thecan .particle has i.mthat valueaa the BoltzmannEof asenergy aÈstato : ¥ ¥[è
e-1 Z= =Wpa poverinaEpatica similarelooksalthough theit nera ,is differentedistributionBoltzmann sincethe Gibbsfrom distribution ,single particheofE theis energy aa ,distributionGibbsWhite in theE n arrbitmaryof subsystemtheis energy an ,and include Interactionwould also sonepartichelecturer the .The thatdistributionBoltzmann showsofthe the state thelower energy a ,prestabilite particleforthehigham ait and numberin thebeto arremageinparticle levelcentinaiaof a canCalculatedbe as :¥èè c=a affairesconstant laisurlare ( a N partidosimposing £ ( )of#=ma .distributionStatistical perfecta6 for a. quantum gasquantum isperfectaa whealgas gasainteraction ponticheonly behucenthe quantum effectstheare for1the apprroximation Tra < < walidclassicaperfecto is notgaseshome pvpotential D= TlnzLandautheWriting = --levelparticular hefare :a -2T lnda = a- ± )ten Ne-( E= → na- En Ena → pancase,idepending valuesthe of hee canweon scenariohave possible3 :1)
Il testo formattato con i tag HTML è il seguente:Fermione gas )}{ ( èda lnT0,1 1 +c-ha = -sta à thefiendHsing = - we cand µof particle levelin fanumber :arerragesta 1^ E= [È FERMI DI RAC-+e2) bassa gas È'Èi( )IN tendac- =ha e-theandereIn series tofor be0convergente neesl <ne µ .'( )tenda 1= e-- particle levelofnumberAverage infa :sta 1 BOSE-EINSTEIN= Èe- e-3) bofh 2)If in the1) andcasaevpsnential team greaseris muchoabbaiathorn :neore ,tra BOLTZMANN= eThe ofequationF. of state perfectaaquantum gasThe Ilelmholtz quantumfree ofenergy ais bygiven :gas È N' ÈFaaszmann fermioniF ± += :mi"2g V