Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
Genetics and Drug Efficacy
GENETICS RESPONDERS GENETICSVARIABILITY ImprovingChoosing Better PredictingEarlythe Best Understanding Efficacy andDecisionTargets of Our Targets SafetyMaking.Goal: use geneticsto broaden drug’stherapeutic indexEfficacy: % patients cured at a given doseToxicity: % patients exhibiting side effectsat a given doseTherapeutic index: Dose range at whichdrug shows highest efficacy and lowtoxicity
Drug Efficacy in anIndividual Patient
Dose (mg/kg) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
Efficacy |
Drug Efficacy in PatientPopulation
Dose (mg/kg) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
Patient 1 | ||||||||||
Patient 2 | ||||||||||
Patient 3 | ||||||||||
Patient 4 | ||||||||||
Patient 5 | ||||||||||
Patient 6 | ||||||||||
Patient 7 | ||||||||||
Patient 8 | ||||||||||
Patient 9 | ||||||||||
Patient 10 |
Drug Toxicity forIndividual Patient
Dose (mg/kg) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
Toxicity |
Drug Toxicity in PatientPopulation
Dose (mg/kg) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
Patient 1 | ||||||||||
Patient 2 | ||||||||||
Patient 3 | ||||||||||
Patient 4 | ||||||||||
Patient 5 | ||||||||||
Patient 6 | ||||||||||
Patient 7 | ||||||||||
Patient 8 | ||||||||||
Patient 9 | ||||||||||
Patient 10 |
Unsafe drug: small window
Dose (mg/kg) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
Patient 1 | ||||||||||
Patient 2 | ||||||||||
Patient 3 | ||||||||||
Patient 4 | ||||||||||
Patient 5 | ||||||||||
Patient 6 |
Therapeutic window
genetic info to enhance the therapeutic index (TI)
Dose (mg/kg) 0 1 2 3 4 5 6 7 8 9
TI without pharmacogenomics
Patient 1
Patient 2
Patient 3
Patient 4
Patient 5
Patient 6
TI with pharmacogenomics
What are the steps for translating pharmacogenomic information from research into practice?
Step 1. Identify SNPs in genes relevant to drug efficacy or toxicity
Human Genome: 2,900,000,000 billion total base pairs
10,000,000 total single nucleotide polymorphisms (SNP)
300,000 variant haplotypes
10,000 haplotypes in pharmacologically-relevant genes
Step 2. Retrospectively, find SNPs associated with response
SNP: single nucleotide polymorphism
ATGCTTCCCTTTTAAA
Patient 1 Good response
No response ATTGTTCCCTTTTAAA
Patient 2 No response
ATTGTTGCCTTTTAAA
Patient 3 Good response
Good response ATGGTTGCCTTTTAAA
Patient 4 No response
ATAGTTGCCTTTTAAT
Patient 5 No response
ATAGTTGCCTTTTAAT
Patient 6 Good response
Good response ATGATTGCCTTTTAAA
Patient 7 Good response
Good response ATGATTGGCTTTTAAA
Patient 8 Good response
Good response
ATGTTTCGCTTTTAAAPatient 9 Good response
ATGTTTTGCTTTTAAAGood responsePatient 10 No response
ATTTTTTGCTTTTAAAPatient 11 No response
ATCTTTTGCTTTTAAAPatient 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Step 3. Prospectively, determine if those SNPs affect therapeutic outcome
GG GG GGGGGGGGGGGG Treat
GG GGGGGGGG25% cure 50% cure
Determine statistical significance (the probability that such a difference is due to random chance)
Clinical significance of DME polymorphism (1)
Plasma concentrations in the different CYP2C19 genotype after omeprazole 20 mg dosing Clin Pharmacol Ther 1999;65:552-561.
Omeprazole is mainly metabolized by CYP2C19. Distinct differences in plasma concentration are observed between CYP2C19 genotypes.
DME: drug metabolizing enzyme; EM: extensive metabolizers; PM: poor metabolizers
Clinical significance of DME polymorphism (2)
Median data on 24-hour intragastric pH profiles in the different CYP2C19 genotype after omeprazole 20 mg dosing
PK difference between CYP2C19 genotype
PD difference
Pharmacol Ther 1999;65:552-561.
Genotype is required to rationalize the dosing
PK: pharmacokinetics, PD: pharmacodynamics
Ideal flow considering PK-related polymorphism
No No necessity
Non-clinical Suggested genetically variability in PK to consider genotype large small
Clin Pharm PK comparison
Studies between genotypes Genotype data Δsmall Δlarge collection as
Exploratory Dosage regimen demographics & by genotype, etc.
Confirmatory Studies Population PK/PD: genotype
To confirm Genotyping as covariate utility of is useful? genotyping Yes No No necessity
•Product Dosage regimen by genotype to consider Launch
•Pharmacogenomics-oriented TDM genotype
Polymorphic drug metabolizing enzymes
Drug metabolizing enzymes for β-blocker
Drug metabolizing β-blocker enzymes metoprolol CYP2D6
bisoprolol CYP2D6/3A4/1A2
carvedilol
Effect of CYP2D6*10 allele on PK of S-metoprolol
500 (nM) CYP2D6* 10/ * 10
400 plasma
300 in Concentration
200
100 2D6* 1/ * 10 0 2 4 6 8 10 12 14 Time (hr)
Clin Pharmacol Ther 1999;
65 : 402-407
Chronic Heart Failure (CHF) β blocker responder non-responder
CAUSES:
Plasma Concentration Polymorphisms of β blocker Drug Metabolizing Enzyme
Function of Target Polymorphisms Molecules of β blocker Adrenergic Receptor (AR) and Target Molecules
β AR Ser49Gly and Risk in CHF
1 △Ser49 homozygotes without β-blockers (n=63)
▲Gly49 variant without β-blockers (n=28)
☆Ser49 homozygotes with β-blockers (n=59)
60 ★Gly49 variant with β-blockers (n=33)
△β-blocker is more effective%)( in Patients with Gly allele p = 0.12 end-point
40 ☆▲ p = 0.016 of 20 Risk ★0 0 2 53 41 Follow-up (years)
Eur Heart J 2000;21:1853-8.
β Adrenergic Receptor 2 polymorphism Ratio of Responders
Gln/Gln 26%
Gln/Glu Glu/Glu 62%
Gln27Glu is a potential determinant for the response to carvedilol in heart failure
Kaye DM et al. (2003) Pharmacogenetics 13: 379-382
Scientific Basis for Using Pharmacogenomics to Rationalize Dosing
• Top 27 drugs more frequently cited in
reports– 59% (16/27) metabolized by at least one enzyme having poor metabolizer (PM) genotype– 38% (11/27) metabolized by CYP 2D6• mainly drugs acting on central nervous and cardiovascular systems
Phillips et al. (2001) JAMA, 286 (18): 2270-2279
Summary of CYP2D6 activity
Japanese | Caucasoids | ||||||
---|---|---|---|---|---|---|---|
activity | genotype | phenotype | genotype | phenotype | |||
PM | PM | Low | Mainly CYP2D6 | 5 | 3, 4, 5* | * * * * etc~1% | 5-10%??? ( 2 with -1584CG SNP) |
*10/PM* gene (about 3 %) | IM | 10/ 10* | * * (about 15 %) | hetEM: wt / PM gene | |||
EM hetEM: wt / PM gene EMwt / 10*wt / wt(wild type) | ld type) | UM Ultra Rapid (ethnic difference) | UM Ultra Rapid () | low frequency | |||
High Multiple active genes |
Genetica della malattia cardiovascolare
Dati in parte della British Heart Foundation
Heart disease statistics
- Leading cause of premature death in UK– Deaths under 75, 39% of men, 30% of women
- 270,000 heart attacks per year– 43% fatal within 28 days, 32% within 24 hours
350 UK00 300,0 Germany0 250
Sweden USA0/1 200sth Italy150ae France100D Japan500
Mortality from CVD and CHD in selected countries
Rate per 100,000 population (Men aged 35 –74 years)
CVD deaths CHD deaths
1500 1000 500
Russia Poland Finland New England/ USA Italy Spain Japan
Zealand Wales (Adapted from 1998 World Health Statistics)
Genetics of CVD
- Positive Family History– 7-fold increase in mortality in first degree relatives of CAD patients compared with control subjects
- Families share environment as well as genes
- CAD is not a monogenic trait– rare exceptions involving mutation of genes e.g. LDL receptor, apolipoprotein B
Sibling recurrence rate (λ ) for CVDs
- CHD (MI<55yr) =4
- Hypertension = 2.5
- TEXTBOOKIDDM = 15
- Cystic fibrosis = 500
- λ = 2 to 12 (premature CHD)
- RANGE IN LITERATURE sλ = 3 (fatal CHD <65yr)
- DZTλ TWINS
- Male = 7 ; Female = 15 (fatal CHD <65yr)
- MZT (Marenberg NEJM 1994) Female > Male
HERITABILITY Early > Late disease
What is a heart attack?
Blockage of the
Coronary arteries, preventing bloodflow and hence oxygen delivery to heart muscle
Atherosclerosis in vivo
Angiogram
What causes a heart attack ?
Atherosclerosis - slow build up of cholesterol, smooth muscle1. cells and macrophages in cells of arterial walls, may eventually cause ANGINA
Plaque rupture - plaque weakens and tears
Thrombosis - clot forms on the exposed surface of ruptured plaque, repairs damage or...
Clot blocks the already narrowed artery, blood cannot flow, noO delivery to tissue, ischemia - heart attack/stroke/thrombosis2
Clinical manifestations of atherosclerosis
Coronary heart disease
- Angina pectoris, myocardial infarction, sudden cardiac death
Cerebrovascular disease
- Transient ischaemic attacks, stroke
Peripheral arterial disease
- Intermittent claudication, gangrene
Factors contributing to heart disease
Diabetes
Obesity
Inflammation
Infection
Atherosclerosis
Dyslipidemia
Vessel wall Plaque
integrity Thrombosis and rupture
Repair of the fissure in the fibrous cap:
- Lumen of artery is not occluded by clot, asymptomatic
- OR Clot forms into artery, blocks artery
- Heart muscle deprived of oxygen stops functioning well
- Heart attack. Duration and location of blockage determines amount of heart muscle death
Thrombosis