Anteprima
Vedrai una selezione di 10 pagine su 43
Course Notes Pag. 1 Course Notes Pag. 2
Anteprima di 10 pagg. su 43.
Scarica il documento per vederlo tutto.
Course Notes Pag. 6
Anteprima di 10 pagg. su 43.
Scarica il documento per vederlo tutto.
Course Notes Pag. 11
Anteprima di 10 pagg. su 43.
Scarica il documento per vederlo tutto.
Course Notes Pag. 16
Anteprima di 10 pagg. su 43.
Scarica il documento per vederlo tutto.
Course Notes Pag. 21
Anteprima di 10 pagg. su 43.
Scarica il documento per vederlo tutto.
Course Notes Pag. 26
Anteprima di 10 pagg. su 43.
Scarica il documento per vederlo tutto.
Course Notes Pag. 31
Anteprima di 10 pagg. su 43.
Scarica il documento per vederlo tutto.
Course Notes Pag. 36
Anteprima di 10 pagg. su 43.
Scarica il documento per vederlo tutto.
Course Notes Pag. 41
1 su 43
D/illustrazione/soddisfatti o rimborsati
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Estratto del documento

ADVANCED MICROECONOMICS A.Y. 2015-2016

Asymmetric information → PRINCIPAL-AGENT problem

P-A problem: generally they have to conclude a deal, but the agent is in the condition that allows him to have more information.

  • problem 1: HIDDEN ACTION → MORAL HAZARD
  • problem 2: HIDDEN INFORMATION → ADVERSE SELECTION

The principal cannot observe what the agent does. (hidden actions). This fact implies that the actions purchased by the agent generate effects upon the principal wealth.

→ In this context, the 2 parties cannot conclude the contract

CONTRACT THEORY: When an action is not observable, it is also not contractable → The payment is no more a function of the action taken, but on the other hand, a function of the outcome

MORAL HAZARD: When an agent can do what is not in the interest of the principal, but is in the interest of the agent himself.

CONTRACT: Payment = f(outcome)

This kind of adjustment does not come for free

→ This implies a stochastic process → Also the agent becomes risk-averse hence the agent will bear a loss risk, reducing his utility → AGENCY COST

INSURANCE MARKET

Insurer PRINCIPAL → Exp.Π ⇩

Insured AGENT → behaviour → costly risky → safe

The insurer cannot observe the insured behaviors → Moral Hazard prob

The agent behaves in his interests damaging the insurer → Hidden info.

BONUS/MALUS covenant: is a mean through which the insurance can distinguish btw good and bad agents (drivers)

Price = f(outcome)

  • ACTION
  • 0 accident
  • 1 accident
  • 2 accidents

→ when N° of acc. ↑ also P ↑ If the insured want a low P, it should drive safely

RISK-AVERSE agents : want to put all the risk in the insurance company

vs

RISK-NEUTRAL principal → INCENTIVE COMPATIBLE contract

The agent bears some risk → agent exposibility → agency cost

⇒ The equilibrium contract under hidden info: 2nd Best Contract

Other examples:

- CREDIT MARKET: Bank (P) lends money to the firm (A) without

observing the actions taken by the borrower

BANK (P)

  • Firm1
  • Firm2
  • Firm3

More or less risky firms

Firms know their behaviour

Bank cannot classify all firms

Hence, the bank offers only one price (interest rate)

LR firms will find r too high → do not accept!

HR firms will find r convenient → ACCEPT!

At the end the Bank lends money only to HR firms w/an higher

probability of default → Adverse selection problem

- Bond-Holder (P) vs Bank (A)

- Professor (P) vs Students (A) → High/low effort

Excess demand situation: D > S ⇒ price ↑

In an ad. selection situation a bank will not ↑ r, but will

limit the quantity of loans (S) → CREDIT RATIONING of

customers (Agency cost)

min

  • 0.1w1 + 0.3w2 + 0.6w3

st. 0.1w1 + 0.3w2 + 0.6w3 - 5 ≥ 9

0.1w1 + 0.3w2 + 0.6w3 - 5 ≥ 0.6w1 + 0.3w2 + 0.1w3 - 0

ℒ(x, λ, μ) = 0.1w1 + 0.3w2 + 0.6w3 - λ(P.E.C.) - μ(I.E.C.)

ℒ'w1 = 0

0.1 - λ( 0.1- 1 / w1) - μ( 0.5 · 1 / 2 1 / w1) = 0

0.1 - λ( 1 / 2 1 / w1) - μ( 0.5 / 2 1 / w1) = 0

0.1 - 0.05λ + 0.25μ = 0

0.05λ / √w1 + 0.25μ / √w1 = 0.1

√w1 = 0.05λ - 0.25μ / 0.1

ℒ'w2 = 0

0.3 - λ(0.3 · 1 / w2) = 0

0.3 - λ(0.3 · 1 / w2) = 0

0.3 - 0.15λ / √w2 = 0

0.15λ / √w2 = 0.3

√w2 = 0.15λ / 0.3

ℒ'w3 = 0

0.6 - λ(0.6 · 1 / 2 1 / w3) - μ(0.5 · 1 / 2 1 / w3) = 0

0.6 - λ(0.6 / 2 1 / w3) - μ(0.5 / 2 1 / w3) = 0

0.6 - λ / √w3 - μ / √w3 = 0

0.30λ / √w3 + 0.25μ / √w3 = 0.6

√w3 = 0.3λ + 0.25μ / 0.6

λ and μ sign:

- λ = μ = 0 gives Π₁₂ = 0 Not compatible

- λ > 0, μ > 0

λ = 1 - μ (1 - Π₁₂/Π₁₂) → λ > 1 → contradiction

λ = 1 - μ (1 - Π₂₂/Π₂₂) → λ < 1 Not compatible

- λ = 0, μ > 0

Π₁₂ = μ(Π₁₂ - Π₁₁) sign contradict Not compatible

- λ > 0, μ = 0 YES!

Setting I.C.C > is like we have μ = 0 and λ > 1 as in the Symmetric info scenario → Hence ∞ N° of solutions w₁*, w₂*

Can I choose the same couple of numbers?

I cannot choose 2 equal or different numbers, I should choose 2 numbers near to each other. → if equal I.C.C is violated

With reverse assumptions: P: Risk Averse

A: Risk Neutral

1. SYMMETRIC INFO

Max Π₁₂ . h(R₁ - W₁) + Π₂₂ . h(R₂ - W₂) where h = utility f(x) of P

s.t. Π₁₂W₁ + Π₂₂W₂ - a₂ ≥ M₂ Participation constr.

ℒ(w,λ) = Π₁₂ . h(R₁ - W₁) + Π₂₂ . h(R₂ - W₂) + λ (Π₁₂ W₁ + Π₂₂ W₂ - a₂ - M₂)

∂ℒ/∂W₁ = 0 {λ = h'(R₁ - W₁)/₀ + λΠ₁₂ = 0, λ = h'(R₂ - W₂)/₀

∂ℒ/∂W₂ = 0 {λ = h'(R₂ - W₂)/₀, λΠ₂₂ = 0

R₁ - W₁* = R₂ - W₂* ⇒ W₂* - W₁* = R₂ - R₁

P receives a constant return. All the risk is given to A

2. SYMMETRIC INFO → 2nd Best contract

If P proposes 2 contracts (CE; CI) to the agents without knowing their actions, all A's will choose CE because of its higher paym. even if their acting as Aineff. → MORAL HAZARD

P could propose a pooling contract in the middle btw. the 2 contracts CE, CI. In this case Aeff. will leave the market and only Aineff. will accept the pooling contract → ADVERSE SELECTION

→ Solution: SEPARATING CONTRACT where each agent will choose their contract CAE or CAI (where A stays asymmetric) also called SELF-SELECTIVE CONTRACT → self selection equilibrium

  • MAX Exp. Π of P
  • Exp. Ueff (Ceff1) ≥ μ0E
  • Exp. Uineff (Cineff1) ≥ μ0I Part. consth.
  • st. Exp. Veff (Ceff1) > Exp. Veff (Cineft1) Incentive comp. consth.
  • Exp. Uineff (C Cineff1) > Exp. Uineff (Cineft1) → Each A chooses his preferred contract
  • MAX q [PE (R2−W2E) + (1−PE) (R1−W1E)] + (1−q) [PI (R2−W2I) + (1−PI) (R1−W1I)]
  • st. PE u (W2E) + (1−PE) u (W1E) ≥ μ0E
  • PI u (W2I) + (1−PI) u (W1I) ≥ μ0I Participation constn.
  • st. PE u (W2E) + (1−PE) u (W1E) > PE u (W1I) + (1−PE) u (W1I)
  • PI u (W2I) + (1−PI) u (W1I) > PI u (W2E) + (1−PI) u (W1E) Incent. comp. constn.
  • Not needed to check the sign of λ and μ in the 2 cases
  • PE > PI
  • The Aineff. bears an higher risk wrt Aeff. to get a lower payment
Dettagli
Publisher
A.A. 2019-2020
43 pagine
SSD Scienze economiche e statistiche SECS-P/01 Economia politica

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher Ce.R di informazioni apprese con la frequenza delle lezioni di Advanced microecomics e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Università Cattolica del "Sacro Cuore" o del prof Baglioni Angelo.