Anteprima
Vedrai una selezione di 10 pagine su 167
Chimica industriale - produzione dell'industria chimica Pag. 1 Chimica industriale - produzione dell'industria chimica Pag. 2
Anteprima di 10 pagg. su 167.
Scarica il documento per vederlo tutto.
Chimica industriale - produzione dell'industria chimica Pag. 6
Anteprima di 10 pagg. su 167.
Scarica il documento per vederlo tutto.
Chimica industriale - produzione dell'industria chimica Pag. 11
Anteprima di 10 pagg. su 167.
Scarica il documento per vederlo tutto.
Chimica industriale - produzione dell'industria chimica Pag. 16
Anteprima di 10 pagg. su 167.
Scarica il documento per vederlo tutto.
Chimica industriale - produzione dell'industria chimica Pag. 21
Anteprima di 10 pagg. su 167.
Scarica il documento per vederlo tutto.
Chimica industriale - produzione dell'industria chimica Pag. 26
Anteprima di 10 pagg. su 167.
Scarica il documento per vederlo tutto.
Chimica industriale - produzione dell'industria chimica Pag. 31
Anteprima di 10 pagg. su 167.
Scarica il documento per vederlo tutto.
Chimica industriale - produzione dell'industria chimica Pag. 36
Anteprima di 10 pagg. su 167.
Scarica il documento per vederlo tutto.
Chimica industriale - produzione dell'industria chimica Pag. 41
1 su 167
D/illustrazione/soddisfatti o rimborsati
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Estratto del documento

Regulation of Chemicals: REACH

In October 2003, the European Commission adopted a draft regulation under the acronym REACH (Registration, Evaluation and Authorization of Chemicals), to expand regulation from the current 3000 chemicals tested to the 70,000, produced or imported at a total level of more than 1 tonne/year. The degree of testing required varies depending on whether the total production plus imports in Europe is greater than 1, 10, 100, or 1000 tonnes/year, and there are substances of high concern—carcinogens, mutagens, and reprotoxins (CMRs); persistent, bioaccumulative toxins (PBTs); very persistent bioaccumulative toxic chemicals (vPvBs); and endocrine disruptors. The burden of proof of safety is shifted from the regulators to the industry.

Authorization will involve about 12 million animal tests, and has set the "green" supporters of chemicals testing at the throats of the equally "green" animal rights activists.

The chemical industry is research intensive.

It hires many graduates, peaking at one time at 13.3% of all scientists and engineers in the United States. In the late 1990s, the figure was reduced to 9%, 5% in the pharmaceutical industry, and 4% in the remaining sectors. That still amounted to 91,000 scientists and engineers, and most of them work in research and development laboratories.

Actually, 3–4% of sales is considered normal for companies that do not have a pharmaceutical arm and are only marginally involved in specialty chemicals. Research-based pharmaceutical companies with few other interests spend 10–25% of sales on research. True specialty chemical companies have budgets about one third of those of the pharmaceutical companies.

An important concept in today’s chemical industry is the ever-present possibility for dislocations. This is particularly important for planners who, all too often, find their scenarios askew because of a dislocation. Dislocations are defined as

events over which a given company has no control but which markedly affect that company's business.

Struttura Ind. chimica (p2)

Sulfuric acid heads the list by a large margin as befits its position as an economic indicator, although its maturity means that its growth has been slow. Though it has many applications, about 45% is used for phosphate and ammonium sulfate fertilizers.

Of the first 15 chemicals, only five - ethylene, methyl tert-butyl ether, propylene, benzene, and ethylene dichloride - are organic. Four are associated with the fertilizer industry - sulfuric acid, nitrogen, ammonia, and phosphoric acid. Oxygen is used by the steel industry and for welding. Sodium carbonate is important in the glass industry.

sulphuric acid ethylene propylene methyl tert-butyl ether benzene

H2SO4 CH2=CH2

Na-carbonate ethylene chloride MTBE Na CO CH2=CHCl2

Struttura Ind. chimica (p2)

Most of these chemicals are

also used to make organic chemicals, but their main markets lie elsewhere. Chlorine (Cl ) has a number of uses including the bleaching of paper, as a disinfectant, and as a component of organic compounds, most important of which is vinyl chloride whose precursor is ethylene dichloride. Many chlorine compounds, however, are now considered ecologically undesirable.

The three most important organic chemical building blocks, ethylene, propylene, and benzene, occupy positions 4, 7, and 13. The majority of remaining chemicals in the top 50 are organic, and these form the backbone of the so-called heavy organic chemical industry. Heavy organics are defined as large volume commodity chemicals such as ethylene and propylene as opposed to specialty chemicals such as dyes and pharmaceuticals.

Some of the chemicals have only one very large use. For example, the major use for ethylene dichloride (No. 12) is to make vinyl chloride (No. 15). The major use for ethylbenzene (No. 79) is...

  1. 20) is to make styrene(No. 22).
  2. p-Xylene (No. 27) is converted primarily into terephthalicacid (No. 25).
  3. Cumene (No. 30) is converted to phenol (No. 33) andacetone (No. 41).
  4. Cyclohexane (No. 42) is used primarily to makeadipic acid (No. 46) and caprolactam (No. 49).

terephthalic acidp-xyleneethylene dichloride styreneethylbenzeneCl O OHClvinyl chlorideCl HO Ocaprolactamacetone cyclohexane adipic acidcumene phenol OOH O OH HNO O OH 80

Struttura Ind. chimica (p2)

Many of the top 50 chemicals are monomers for polymers, including ethylene, propylene, vinyl chloride, styrene, terephthalic acid, formaldehyde, ethylene oxide, ethylene glycol, phenol, butadiene, propylene oxide, acrylonitrile, vinyl acetate, adipic acid, and caprolactam.

formaldehyde ethylen glycolethylene oxideOCH O HO2 OHbutadiene propylene oxide vinyl acetateOO O 81

Struttura Ind. chimica (p2)

Raw materials Base chemicals IntermediateInorganicInorganic Intermediates(NH , H , H SO , HCl, H PO , Cl ,(H O, air, minerals, 3 2 2 4 3

4 2metalli, Si, vetro, ceramica,2 (formaldeide, acido acetico, NaCl, SiO , ….) zeoliti, fibre inorganiche, …)2 ossido di etilene, cloruro di vinile, acetato di vinile, combustibili fossili, prodotti chimici di base, acrilonitrile, acido meta-acrilico, anidride ftalica, & (carbone, petrolio, (syngas- CO/H , alcani, anidride maleica, fenolo, …)2 gas naturale) olefini, aromatici, HCN) Energia Prodotti chimici di base Prodotti finali (da altre fonti) (CH OH, etanolo, metilammina,3 composti alogenati, polimeri & elastomeri, fibre, acetaldeide, etanolammine, detergenti, agrochimici, acetone, ..) Biomassa farmaceutici, ... Chimica industriale inorganica Raffineria Petrochimica Settore dei polimeri Prodotti chimici fini e speciali Struttura chimica industriale (p2) 83 Struttura chimica industriale (p2) 84 Struttura chimica industriale (p2) un gas a STP composto principalmente da metano (CH ), più (in 4ordine decrescente) alcani C2, C3, C4 e C5 (nessun olefina, perché troppo reattiva) può o non può essere associato al petrolio deriva dai processi anaerobici di

decomposition of biomasses contains variable amounts of H S, N2, CO (+ water 2 2 deriving often from extraction processes) 85

Struttura Ind. chimica (p2) 86

Struttura Ind. chimica (p2) 87

Struttura Ind. chimica (p2) 88

Struttura Ind. chimica (p2) 89

Struttura Ind. chimica (p2) 90

The main process employed is amine absorption The sour gas enters at the bottom of an amine contactor and contacts the lean amine solution which enters the contactor at the top

The amine solution removes the acid gas components and sweet gas flows from the top of the contactor

The rich amine (amine containing acid gas) flows from the bottom of the contactor where is is regenerated

The acid gas will either be injected, flared or sent to a sulfur recovery facility to recover the sulfur 91

Struttura Ind. chimica (p2)

The gas to be treated is fed to the bottom of the absorber and flows 2R NH + CO + H O2 2 2 countercurrent to the absorbing (R NH ) CO2 2 2 3 liquid supplied at the

top of the (RNH) CO + CO + H2O2 absorber. Acid gases are then 2RNH HCO23 absorbed by the absorbing liquid. (RNH)2 S

The liquid that has absorbed the acid gases is preheated and then supplied (RNH)2 S + H2S 2RNH HS2

to the top of the regenerator where the acid gases are stripped by steam need of weak bases which accelerates the absorption, but do not form too strong bonds which make difficult the stripping

and recirculated to the absorber. 92Struttura Ind. chimica (p2) 93Struttura Ind. chimica (p2)

All natural gas will be saturated with water and will require to be dehydrated

Three different processes could be employed

  • Glycol Dehydration (similar to the amine absorption process. The glycol absorbs the water from the gas, so dry gas flows from the top of the tower. The rich glycol flows from the bottom and is then regenerated).
  • Desiccant Beds
  • Ethylene

Glycol injection combined with Refrigeration (Glycol is injected into the inlet gas stream. The glycol mixes with the water that is condensed as the gas is cooled. The glycol prevents freezing the glycol-water mixture).

Struttura Ind. chimica (p2) Air Products

Water is a common impurity in natural gas that must be removed to meet pipeline specifications and prevent hydrate formation. Separation based on the kinetics of diffusion.

Struttura Ind. chimica (p2) The hydrocarbon mix needs to be separated into each component. This process is called fractionation. The fundamental principle for fractionation is that each component has a different boiling point. The usual order is to remove the lighter product first. i.e. start with ethane, then propane, then butane (iso then normal) and finally condensate. Fractionator towers are usually named for the overhead product. A deethanizer implies that the top product is ethane. A depropanizer indicates the top product is propane. With C2+

Deethanizer - the first step in the fractionating sequence is to separate the ethane from the rest of the propane and heavier hydrocarbons.

Depropanizer - The next step is to separate the propane from the rest of the butane and heavier hydrocarbons.

Debutanizer - the final step is to separate the butane from the condensate.

Struttura Ind. chimica (p2)

GTL (Gas to Liquid)

Notevoli studi e progetti di sviluppo in questo settore gasolio medio

Fischer-Tropschs

Struttura Ind. chimica (p2) 97

DME, fuels & olefins, Methanol chemical synthesis LPG, Air Syngas Fischer Product Synthetic CO Air Naphtha crude H separation production Tropsch Upgrading 2 Diesel Gas CH4 processing CO Coal 2 Purification Gasification removal 98

Struttura Ind. chimica (p2) NG Stranded 99

Struttura Ind. chimica (p2) 100

Struttura Ind. chimica (p2) 101

Struttura Ind. chimica (p2) 102

Struttura Ind. chimica (p2) 103

Struttura Ind. chimica (p2) 104

Struttura Ind. chimica (p2) 105

Struttura Ind. chimica (p2) 106

107Struttura Ind. chimica (p2)

108Struttura Ind. chimica (p2)

109Struttura Ind. chimica (p2)

110Struttura Ind. chimica (p2)

light crude oil (°API 44) heavier crude oil (°API = 31)

Dettagli
Publisher
A.A. 2012-2013
167 pagine
SSD Scienze chimiche CHIM/04 Chimica industriale

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher Giuseppe^^ di informazioni apprese con la frequenza delle lezioni di Chimica industriale e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Università degli Studi di Messina o del prof Perathoner Siglinda.