vuoi
o PayPal
tutte le volte che vuoi
∑ lx+3 (2m+x) / m+1 = ∑ (2m‑ x) l2m lx ∑ yx+3 / m+1
lx+3 / l = lx+3
∑ ym = ∑
l ∑ (2m+x) / 2lx+3
∑ym+1m = ∑ (2m+x)
lx+3 ∑ linx 2mm
lx3 (-ln(1‑ ex1))
SERIE DI FOURIER
f(x) = x3
z0 = 1/π ∫ π3 dx = 1/π [ x4π ‑ ππ/4] = 0
cn = 2/π ∫ π x3 cos(nnx) dx = ∫ x3sin(nx) ‑ 3x sin(nx) dx x 1/π =
= 1/π { x3 sin(nx)n
∫ yx+3 ym
= 1/π { x3 sin(nx) ‑ 3x2 sin(nx)n2 ‑ 6x sin(nx)n2 dx } =
= 1/π { x3 sin(nx) ‑ 3x2 sin(x)n2 + [ 6x cos(x)nm3 + 6 cos(x)nm3 dx }
= ‑ 1/π { x3 sin(x)m ‑ 3x2 sin(x)m2 ‑ ( 6x cos(x)n3 + ∫ [ 6 cos(x)m3 dx }0
ψ(t) = (t, cos(t), cos(2t))
Dψ(t) = (1, −sin(t), −2 sin(2t))
∫02π ||Dψ(t)|| dt = ∫02π √1 + (−sin(t))2 + (−2 sin(2t))2 =
∫02π √1 + sin2(t) + 4 sin2(2t) = ∫02π √1 + 1−cos2(t) + 4 − 4cos2(2t)
-7∕70[225 ln(15)] - [x²∕2]015 = -7∕70[225 ln(15)] - [225×5∕2]= -7,09
Svolgendo
∫03 -3 = -3 ∫ [v]03 = -3 × 3 = -9
∫ v dv = [v²∕2]03 = 9∕2
∫03 3 ln(3) dv = 3 ln(3) ∫ v dv = 9∕2 ln(3)
∫03 v ln(3) = 9∕2 ln(3)
92 -7,09 -9 + 9∕2 ln(3) - 9∕2 ln(3) = 546∕3 1,82
ln(2x+y)
T= { 0, (1, 3), (2, 2) }
y-3/3 = x-1/-1 - y + 3 = - 3x + 3 = 3x - y = 0 ✔
y - 2x + 2y + x - z + x - 2 = -2x + 2y + x - z = x+z + 2 - 2
- y = -3v - 2u/4
J =
1/4 ∫01 ln(4u + 2v/2u + v + 3v/4)
= (1/6) ∫06 6 ln (6u + 5v) - ln(x)
[(6u+5v) ln(6u + 5v)|u0
4∫02(2x+v) ln(2x-v)
l(x)=ln(x)
l'(x)=1/x
g'(x)=xg(x)=x2/2
∫ [600 ln (40) - 256 ln (8)] - 1600/12 + 256/12
∫ ∫ v ln (5v) dv f(x) = ln (5v) f'(x) = 1/5v g'(x) = 5v g(x) = 5v2/2
5/2 ∫ v ln (5v) - 5/5 v2 dv = ∫ 160 ln (40) u - 5/2 [v2/2] 0
160 ln (40) - 80
[600 ln (40) - 256 ln (16) - 1600/12 + 256/12 - 260 ln (40) + 80 - 64 + 32 ⋅ ln (8)]
+ 32 ln (8) [7/16] - 9.04