Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
I
ass 0
are two, the amount of energy absorbed is no longer proportional to the
intensity but to the intensity squared (I ), because you need two photons
02
I
ass
to be at the same time and hit the same molecule. This means that you need
more photons because they have to be in the
same place at the same moment.
In linear absorption the intensity of excited
fluorophores is proportional to the intensity of
shining light while their number is proportional
to the intensity of energy: the total energy is
but the intensity varies
always the same,
through the hourglass.
number of fluorophores excited is always the same the density is
So the but
greater in the middle. linear absorption.
This is what happens with
The profile of the intensity of the beam is like a
Gaussian and this is also the profile of the intensity of
the excited fluorophores, if the probability is
proportional to the intensity (as a single photon).
In two photons, if the probability is proportional to
the squared of the intensity, the probability of
much larger in the centre
excitation changes: it is
and less in the side, much more
so it becomes
probable to excite the fluorophores in the centre of
the beam.
With double photons emission I’m concentrating the excitation in the centre of
the beam,: with this technique only molecules in the centre of the beam get
excited and so I narrowed the region where I can excite molecules!
lose resolution because I use a bigger wavelength,
However using this method I
using a smaller portion of a larger beam.
What do we gain? When I shine light with linear excitation, I’m exciting photons
everywhere where the beam goes, while if I have two photons I’m just exciting
where the beam is minimum without the
need of having a pinhole (I’m doing a sort of
scanning microscopy!).
The other thing I gain is that I have much
less photobleaching because I’m exciting
only the centre of the beam so I’m not
wasting fluorophores below and upper, so
the fluorescence I produce is just where I’m
looking at. Moreover I use longer
wavelengths so I can penetrate better the
sample.
15
much powerful sources,
For this method we also need to use like a million
times more powerful. It is also possible to use pulsed sources that don’t shine
photons continuously but accumulate photons and the shine them all together
in order to have a very concentrate energy within the pulses.
STED (Stimulated Emission Depletion fluorescence)
In order to have absorption I have to shine light, while to have an emission I
don’t have to shine light.
molecule to emit energy if I shine it whit the
I can convince a
same light that it emits: for example if I shine my molecule in
green but also in red (that is my emission light, as in figure),
the energy decay become faster. Not only I release my light, I
release it in the same direction and with the same maximum
stimulated emission is the phenomenon by
and minimum:
which the rate of emission of an excited molecule increases
proportionally to the intensity of light that it is illuminated by, if
the light is the same wavelength of the fluorescence emission
(1’).
STED uses two lights:
excitation
- One for the excites the fluorophores
stimulated emission
- One for the makes the fluorophores de-excited.
The number of molecules which
are on level 2 (dn ), the energy
2
from which we started to get
fluorescence, change in time by
virtue some terms one of that is
proportional to the intensity of
light that shines (h ) times the
STED
difference between level n and
3
level n .
2
If level n is more populated than level n light comes and goes down.
2 3
If level n is more populated than level n the light can also go back.
3 2
(formula riquadro rosso).
I can de-excite the fluorophores with light.
So in STED I’m using two beams of two different shapes:
excitation pulse normal
- The is a focus beam
de-excitation pulse donut-shape
- The is a beam darker in the centre and
bright on the side.
So I excite molecules were the beam is, then I turn down the fluorophores
around with the de-excitation beam. 16
Non linearity is used in de-excitation and
to do that you have to shine stronger and
stronger.
Increasing the power of light, the hole
become smaller and smaller because the
probability to getting de-excitated is not
anymore proportional.
Since the stimulated emission is brought
in a non-linear regime when you increase
a lot the power, the region where the
fluorophores are not de-excited becomes
really small: increasing intensity the light areas become saturated and dark
areas are contracted. We gain much if the turning off is proportional to
the intensity: I have to use non linearity in de-
excitation, so in turning fluorophores off and I can
do this shining stronger, with super powerful pulse.
With this method of increasing power the hole
becomes smaller and smaller: the probability of
being de-excited is proportional to the de-
excitation pulse when this pulse is not very
powerful; because the probability of being de-
excited cannot be more than a limit, when the de-
exciting pulse goes over this limit, all the
molecules become de-excited.
*Dashed lines indicate the percentage of quenched
fluorophores.Upon entering the non- linear regime
the region where we can still have excited
fluorophores shrinks!
The much I increase the power of the de-excitation light, the narrower becomes
the region where I still have fluorophores emitting light
17
*the dashed blue line represents the 100% quenching level.
This technology is made up of a first green excitation laser and
then a second read beam that has a donut-shape; the size of the
hole is the resolution; the red pulse is much stronger and a little
delayed compared to the green beam. After I’ve de-excited my
fluorophores on the side, I’m able to look the remaining ones at
the centre. scanning technique
At the end what I have is a where I have a
smaller region but with very concentrate fluorophores.
10.10.2016
Excitation is intrinsically a stimulation, because electrons absorb energy and
move to the next orbital.
Stimulated emission is instead a new concept: fluorescence life time (the time
the molecule stays excited) can be reduced when the molecule is shined at the
same wavelength it would emit.
This technique uses two beams:
Excitation beam
- normal shape
Quenching beam
- donut shape, with a hole in the centre
The excitation pulse has the same usual shape of a light beam.
Light beam is usually a Gaussian, a peak. It’s
more intense in the centre, less intense in the
sides. The intensity walking along x will start
with low intensity, than it reaches the
maximum at the centre, than it goes off on the
other side. This is a linear excitation because
the number of fluorescent molecules excited is
18
proportional to the intensity of light. The density, the number of molecule over
volume (for example the number of molecules in a cube of 1μm volume) that
3
are excited after this pulse, will have the same shape so there will be more
excited molecules in the centre of the area.
If I cut in half the intensity of the beam, the density of the molecules will be
half.
The second beam has the opposite shape:
from zero, it goes up to the maximum, goes
down to zero in the centre and then it goes
up again to maximum and down again. This is
the quenching beam, the stimulated
emission.
If it is linear, the fraction of excited molecules
which are quenched is proportional to the
intensity, so it will de-excite more where
there are the peaks at the edge and less where it goes down in the centre.
For example: we have some flourescent molecules and we excite a fraction of
them and then with the de-excitation pulse we quench a fraction of the excited
molecules proportionally to the intensity.
If we double the intensity we also double the number of quenched molecules.
If both beams are linear we don’t gain anything because the width of the
excitation beam peak is the same of the hole in te quenching beam.
If I increase the intensity of the second beam, I increase the fraction of the
excited molecules that are quenched, and if I increase the intesity a lot I can
reach the 100% of the excited molecules quenched. But if from this intensity I
double the power, I won’t double the effect because I can’t go over 100%!
So the pattern of quenched molecules has the same pattern of light as long as
they are proportional: when I have a quench beam that de-excite 100% of the
molecule, if I augment the intensity I will shrink the hole, so I will shrink the
area where the molecules are still excited and the only fluorophores that
survive are the ones in the centre. This is non-linearity.
The blue dash is the line where the 100% of
fluorophores are quenched.
Look at the four profile patterns each one
stronger than the precedent from blue to
violet: assuming that the smallest (1) at the
maximum of the intensity de-excites 100% of
the molecule in that area, if I increase the
intensity (same wavelenght) I can quench
molecules proportionally to the intensity, and
so in a bigger area (because it’s not linear).
In this way I can shrink the area where
molecules are still excited: for each pattern the area where molecules are still
excited is smaller than the area of lower intensity pattern.
19
Summarize: In order to perform STED I use two beams:
Excitation beam is a pulsed laser with an
ordinary Gaussian shape
Quenching beam is a pulsed laser that is higher
in intensity and has a donut shape; the size of
the hole is usual 0,5 m.
The first pulse excites the fluorophores, the second
beam quenches them: if the STED beam has a power
zero, I can see the signal from all the fluorophores
excited. The larger the intensity of the second pulse,
the fewer are the fluorophores that remain excited.
Usually this technique allows to see the 10% of the
fluorophores, while 90% are de-excited: the 10% that
are left are the ones in the centre of the hole.
The shape of the light coming from my fluorophores is
much more narrow so I can move my resolution from
0,5µm (black spike) to 100nm (red spike).
Also you can stain your molecules with two different fluorescence proteins (GFP
and YFP) and you can excite them with the same beam and then quench them
by shooting very hard staying on the same wavelength, then looking at the
emission using a dichroic mirror to recognize the two different emission (paper
– two colours STED...).
So STED is a super-resolved op