Estratto del documento

MAGI

recall

fast special

In is of

case

a :

,

. Yq

31 yz Bq

Y Bo y1 32.

1 = = =

=

= ...,

,

,

o

↑ Yq

q 0

= =... =

+ 1 + 9

=> B

1

E(y w

+ = +

04/1

VI ) 00

+ =

= -2

+- e

et if

Bijen

Ven =

=

i

e e lu

, if q

o

= Vere e

pi e 2

- if 2

,

1

Pe 9

=

= = , ....

Yt-el

PIX MA19)

2 p

if This

Per represented

bow ACF is

is of

+

o 1

+, = = e Malg

l lu

lave

Marg1 stating

In all -AC F

Per fo of

,

1 2 grem Per

1

+

we 9

a g

=

:

= =

, ..., ,

, MArq

Recall the

ARPI

four lave to valif No

that solespomdence

shown also gour

ome

one-

We

MA/1) B

MA(1) twee e

Pr between

not evespendence

) C

= is one-tene am

= =

to

In to

it westwist

the souvespendence

to domain B

the

obtain

auter is of

necessauly

ome

one- ,

stationality

11 simila

condition

11

in fo is

-

, . MAq

It What

MANI but

is about general

you

easy a

,

Invertibility

There beginitions inveufibibility

of

mode

a re .

SPEX AR

be

could represented

Definition invertible it

is as

as

a :

: assumption

usual

↓ component

vanbom

Y 2yt

nY

+ +

+ + uf

w +

= + 2

1 . . .

-

comstamt

and

02) .

Where WN/o convergent

square

j mean

, , i

fandonly

invertible

MAGI

the is avvateustis

its equation

s

drem : Bl Bq1"

Bl lave

1 module

+...

+ >

+

+ 0 .

1

=

Summary at end

always

is

vandom component

definitions : ↑

HYNAR(P) - 02

ARPI /0

x2Yt

+

X i

xPT i b

Where NWN

+ +

2 +

· uf U

w

: = p ,

.

... .

.

- - JurWNo

: Se

MargY

Magl Where

-1 Batt Bqq

· M+ ... ,

= ↳ component

vandom

just explanation at

it's the it end

thue

be

should

were fou ,

it A/L)

AR(P) depend the

stationality Moots of

> 0

· : = on =

MA/q stationality

always

=

AR/P) always invertible

invertibility =

· : MA(q1 depends the BIL)

roots

it

= of 0

on =

ARMA(p qu

, and

AR/p)

Meuge Marqu

MYNARMAp g) Y constant

&pY-p

+Y only

2Y.2 and

only

+ one one

=

, ... component

Bq4

324 vandom

Bu + +

+ + uf

+ + +

1 . . . g

-

- -

two

The clawasteristics equations

xpli B/1)

All)

x22 factous

lave

and

21

1 m e

0 common

=

-

- -

- ... Bq(9

B

B

,

1 + +... +

+ 0 decibe

= general

mandataly we can

in

not

is ,

w to mot

w du

use

↑ situation

depends the

on

g)

ARMAP

If keep

stationally constant the

the

will

is model

in

we w

, ,

9)

ARMAP not

If stationary

is usually smitted Whiel

,

there

wowever special in

is some cases

w a re

,

, ;

, , the

present

though not

G constant and

the

ARMAP is

stationally

is sucle

model

in in

even cases

,

,

,

bift mame

It's

called

it fling

the

is another

With

same

. =

"de-meaned"

If then

to

the the

related Y

variable

so-called is

specification

model is w

-w

+

, ,

the the

model when

not stationary

also

included is

in possess :

,

* aft =

apft +

Bq4 +

By + +

+

+ + w

+ u >

= +

+

p +

1 1 g

. . . . . .

-

- -

g

The ARMAP be me-whilter follows

o p cam as :

,

All(y B((uf

+

w

+ = /MA/I

91

ARMA/p component

the to

stationally

is stationally

ARI)

related stati

is always

is

>

, .

AR/)

denemds by

only

mavy , MANDI

ARMA/P .

If 9) be converted With

stationary if in

is Nj convergent

square

mean

can

, ,

Is !

ARMAP 9) invertible

, AR/)

91

ARMA/P invertible converted

them With

be

it in ij

is square

mean

can

, , b

convergent 91 expementially

ARMA/P decays

it

ACF of > 0.

as

:

,

.

Not stationary so

What Recall the If

?

stationally !

importance stationality Sp not

not

SP

if is is

of

a a

f

"twamsgrum to stationally

ader it

make

stationally in

we cam

, : 02) We

10

Fou NEW Y Yt i demonstrated

d wave

where ufNWN %

example +ut

= 1 ,

.

. .

.

-

not to

flat stationary

IP

this How "transfrum" make it

is auber

it in

we can

.

?

Stationary Y-Y Whe

NWN is stationally

= .

-

Af It

A weak

stationary stationary

is

is weak

ut ut

s >

= -

X X

At + -

= 1

- Dyf

Tyc

Note flue IS this Sys

in case : ....,

,

Not qu

stationality ARMA/p

in ,

g the

Recall stationally ALLI greater

fluat ARMAP noots lave

is all mobile

of to

a

,

these

In noots

tham lave

general

1 complex

. may :

, the sizele)

gueateu flan

1 unit

motule autside

1 ;

. bata

flue circlel the

to will

2 unit real

module con find

in

1

equal we

: ,

. to

Noots equal only

one : the

circle)

1/withim

less won't

. flon

3 data

module unit

the real

in we

: ,

this

don't

type

this gind

find roots Usually

of we .

case

. ALI

the polynonial

becompose

Thus gollows

as

cam

, :

we 218/2)

11

A(l) = -

where : d

ANI it's

lad roots module and degwee

of

1

of P

.

· ,

AllI stationality), deguee

1 .

it's

greater tham

Was noots module and p-d

of of

· I stationality

have

we it'

don't stationary

if

know

Ii

T

BILI

The 91 ALLIX not stationary

SP is

ARMAp It

: = ;

, 11-116/n arma

But "transformed" 9)

the recess :

,

Arma-Äl//1-219Y Biclut is stationary

+= 210y 1y

G V

11

if

> 0 +

+

- > = =

= -

b Y

2(X

(1

if Xt

1

- +

= =

- - 1

-

11247

(1 11 V +

(2)

G 24 +

if 22

2 +

+

-

> + +

=

= 2

- = - 1

- -

qu

(p d

Sp Arima ,

, integrated

I .

stands gou

#Narimalp alllin-218y

g)

d Bill

+

w uf

+=

,

,

GunwN/o se

Where ·

: , XP(P

x12-x222-

Alll 1

· -

= - . . .

(

B(L) Bq29

B B

1 +

· + +...

+

= BIL1

Alll Moots

lave

and 0

0

· common

ne

=

=

All thom

greater

las With

Noots module .

all 1

· o depends

stationary o

o

Remarks

TNARIMAP 9) stationary d

6 is > a

=

,

,

MINARIMA/d g) the

is Marg) component

invertible is invertible

p ;

, ,

MONARIMAP 9) q to

equivalent ARMAP

to

is weets

6 With I equal .

1

,

, ,

another component of sp

Seasonal is

data

lot

SD Seasonal

seasonal

of

a T component

The time indicated by

contain component .

5

often seasonal

series also a ,

Four example : monthly monthly time

series repaut

the

seres

S elease for

· 12 >

: =

time

daily +

series S

· : =

Time lauws 5 24

series

· =

:

1) Pure AR(1) with 5

Seasonal

examples = 12

=

Y 21Y

+ + uf

+

+

w 12

= -

21(12) /

(1 uf

- =

2) Pure with

RW 7

S

Seasonal =

X

↑ uf

+

+

= -

27)x

(1 uf

=

-

Pure seasonal ARIMA

Giu QSally11-191X B(%) uf

Pure ARIMAP

Seasonal D w +

=

, , It's

where => whose

process

a

:

Gui ser meat

tends to

WN/o

~ mogwession be

· , auber P

the of

AR similar

steristico process

of

not. itself

Cava in way

a

↑ - p

Ally x120 to

ascouting

x22 centain

· 1 - a

= -

- ... duter Q pecificity

MA of

elvavadeustive the constant

of

pol Mosess

.

↑ Bals

B22

lo

%

Bl B

· +

1 + +...

+

= ,

Was tham

queater

A/L1 rests module

all of 1

· o

=

%= % lave roots

B11

All and

· 0 no commen

0 =

Remarks

MYNPue QIs

ARIMALP D

stationary

is

Seasonal D =

- >

,

, /V .

Pure

If the ARIMA/P due to

stationality 15

Seasonal Q1S is In

D21 fast

1-26

D

of

no = :

, ,

2 >L to

with

1 5 complex equal

modules

voots all .

1 1

=

0

= =

- = , 11-115 10

Please between

to

attention 11-10

tee difference and As :

=

pay =

, (1 (0) 13y 11 y

27y y

15 +

+

- +

+ s

=

=

- -

= - -

1)/

2) ° / /1

1

11 <A

- =

= -

Both but

not stationally

generates processes :

,

At to

was equal

all

s Noots 1

· ,

different

las to

neets

As .

which 1

equal

is

s only

· one

among

,

~ Pure the

invertible

Q

ARIMA/P that is

Seasonal component invertible

is

D is

MA ;

, ,

/

B/

% tan

lave modules .

1

g

Anteprima
Vedrai una selezione di 10 pagine su 41
Statistics for experiments Pag. 1 Statistics for experiments Pag. 2
Anteprima di 10 pagg. su 41.
Scarica il documento per vederlo tutto.
Statistics for experiments Pag. 6
Anteprima di 10 pagg. su 41.
Scarica il documento per vederlo tutto.
Statistics for experiments Pag. 11
Anteprima di 10 pagg. su 41.
Scarica il documento per vederlo tutto.
Statistics for experiments Pag. 16
Anteprima di 10 pagg. su 41.
Scarica il documento per vederlo tutto.
Statistics for experiments Pag. 21
Anteprima di 10 pagg. su 41.
Scarica il documento per vederlo tutto.
Statistics for experiments Pag. 26
Anteprima di 10 pagg. su 41.
Scarica il documento per vederlo tutto.
Statistics for experiments Pag. 31
Anteprima di 10 pagg. su 41.
Scarica il documento per vederlo tutto.
Statistics for experiments Pag. 36
Anteprima di 10 pagg. su 41.
Scarica il documento per vederlo tutto.
Statistics for experiments Pag. 41
1 su 41
D/illustrazione/soddisfatti o rimborsati
Acquista con carta o PayPal
Scarica i documenti tutte le volte che vuoi
Dettagli
SSD
Scienze economiche e statistiche SECS-S/01 Statistica

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher Sarina24 di informazioni apprese con la frequenza delle lezioni di Statistica per la sperimentazione e le previsioni in ambito tecnologico e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Università degli Studi di Firenze o del prof Nikiforova Nedka Dechkova.
Appunti correlati Invia appunti e guadagna

Domande e risposte

Hai bisogno di aiuto?
Chiedi alla community