Anteprima
Vedrai una selezione di 10 pagine su 90
Statistics for stochastic processes Pag. 1 Statistics for stochastic processes Pag. 2
Anteprima di 10 pagg. su 90.
Scarica il documento per vederlo tutto.
Statistics for stochastic processes Pag. 6
Anteprima di 10 pagg. su 90.
Scarica il documento per vederlo tutto.
Statistics for stochastic processes Pag. 11
Anteprima di 10 pagg. su 90.
Scarica il documento per vederlo tutto.
Statistics for stochastic processes Pag. 16
Anteprima di 10 pagg. su 90.
Scarica il documento per vederlo tutto.
Statistics for stochastic processes Pag. 21
Anteprima di 10 pagg. su 90.
Scarica il documento per vederlo tutto.
Statistics for stochastic processes Pag. 26
Anteprima di 10 pagg. su 90.
Scarica il documento per vederlo tutto.
Statistics for stochastic processes Pag. 31
Anteprima di 10 pagg. su 90.
Scarica il documento per vederlo tutto.
Statistics for stochastic processes Pag. 36
Anteprima di 10 pagg. su 90.
Scarica il documento per vederlo tutto.
Statistics for stochastic processes Pag. 41
1 su 90
D/illustrazione/soddisfatti o rimborsati
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Estratto del documento

STATISTICS FOR STOCHASTIC PROCESSES

  • material on skuola.net computer
  • 26 hours of classrooms + 6 hours of lab (R) + Rimotta lectures
  • Thursday 9.00 - 10.30

Exam

  • analysis of a data set
  • essay on one of the documents by Prof. Rimotti right after the first part (30 min)
  • oral examination (one question) a couple of days later

After the written part: ottimo - distinto - buono - sufficiente

books + web page

install packages "astsa" from the il paradiso dello studente page web, package "TSA"

12 Marzo 2018

What is a TIME SERIES?

Statistics are computed on observations (data): x1, ... , xm

Simple model: realizations of iid random variables X1, ... , Xn

There are correlations among data, particularly if time is involved in ordering usually through time.

Data are observations at discrete times of stochastic dynamical systems usually described with a stochastic process: discrete time series

Notation: Xt t tt z

We can't assume longer independence vs time series analysis

  • Goals: description of data (plots, descriptive statistics, ...)
  • looking at trend, seasonality, random terms

Time series (1 & 2): deterministic function (exponential) + stochastic process whose variance grows with time

Correlations as scatter diagram with log-log plot

Global temperature + trend to seasonality

speech: periodic time series

Prof Rimbot: spectral analysis to understand how to compute periodicity Fourier analysis

We're going to study linear time series sampled with time

Difference between periodicity and seasonality

Another tool is seasonal and trend decomposition, the command in R is decompose

seasonal + trend = trend loses decomposition

Remainder is a stochastic error

additive (linear) model: adding seasonal,

trend and remainder gives up the original data plot

  • We will focus on finding a stochastic model for the remainder term, for example with descriptive statistics (tests for normality, qq-plots, histograms)

We'll work on data only, time series it's easier

mean and variance are constant over time

Non-stationary times series could be transformed

so we have that

E(Xt) = μt + E(X0) + ∑j=1t E(Wj) = μt

and

δt,ρ = E[(Xt - μt)(X0 - μρ)] =

 = E[(μt + X0 + ∑j=1t Wj - μt)(μρ + X0 + ∑j=1ρ Wj - μρ)]

 = E [ (X0 + ∑j=1t Wj) ( X0 + ∑j=1ρ Wj) ]

 = E(X02) + E(X0) E(∑j=1ρ Wj) + E(∑j=1t Wj)E(X0)

  + ∑j=1tk=1ρ E(WjWk) = σ2 min{ρ,t} a Lt

and also we have that

  • E(WjWk) = { E(Wj)E(Wk) = 0   j ≠ k }
  • { E(Wj2) = σ2        j = k }

and if ρ ≤ t, there are ρ pairs such that j = k

while if t < ρ, there are t pairs such that j = k

∞            δt,ρ = σ2 min{ρ,t} a Lt

ρt,ρ =   δt,ρ = { min{ρ,t} a t σ2 /t             if ρ ≤ t

                σ2 ρ a Lt √ρσ                         if t < a

EXAMPLE

Let us consider a periodic signal

Xt = R sin(2πWt + φ) + Wt   with   t ∈ ℝ,

  ———————————————

W ∼ Θ, φ ∈ ℝ and

{Wt, a ≈ N(0,σ2) and iid)

In the case R = , 2πW = 1 and φ = 0

and in this case we have

Xt = sin t + Wt

R is the AMPLITUDE, φ is the PHASE/SHIFT

W is the FREQUENCY     ρ = √a = ŵ

                  2πW = Ŵ

—φ/2πW is the shift with respect to the first

   CROSSING

{Xt} is stationary

Kolmogorov Theorem

{Xt} a stochastic process (Xt₁, ..., Xtm)

  • FXt₁, ..., Xtm

= (x₁, ..., xm) =

P(Xt₁ ≤ xi, ..., Xtm ≤ xm)

if Xi → ∞ I get that

FXt₂, ..., Xtm

(x₂, ..., xm) = P(Xt₂ ≤ x2, ..., Xtm ≤ xm)

EXERCISE Check if δ(h) = Cov(h) is a ACVF

{Xt} is STRICTLY STATIONARY if

(Xt₁, ..., Xtm) = (Xt₁₊ₙ, ..., Xtm₊ₙ)

in distribution

∀ m ∈ ℕ, h ∈ ℤ, ∀ t1, ..., tm ∈ ℤ

This means that the stochastic behaviour of {Xt}

over (t1, tn) is the same as (0, nth)

Theorem

If {Xt} is strictly stationary

and {Xt} ∈ ℒ2 ⇒ {Xt} is (weak) stationary

Proof

Note that for m = 1 ⇒ Xt₁ = Xt₁₊ₙ

∀h ∈ ℤ ∀t1 ∈ ℤ

if E(X²t) < ∞ then we have E(Xt) = E(Xt₁₊ₙ)

and Var(Xt) = Var(Xt₁₊ₙ)

We have Cov(Xt - X₀) = Cov(Xt₁₊ₙ, X₀₊ₙ)

since (Xt - X₀) = l (Xt₁₊ₙ, X₀₊ₙ) ∀t, ℓ ∈ ℤ

EXAMPLE 11

Consider Xt = μ + γt

a random walk = δ + μt + wt

then ∇Xt = Xt - Xt-1 = μt - μt-1 + (γt - γt-1)

= δ + ∇γt + wt

stationery

The difference operator at LAG d is

dXt = Xt - Xt-d = (1 - Bd)Xt

while we have ∇dXt = (1 - B)d Xt

EXAMPLE 12

of Xt = mt + at + γt with at such that at = at-d (a is the period), then

dXt = Xt - Xt-d =

= mt + at + γt - mt-d + at-d - γt-d =

= (mt - mt-d) + (γt - γt-d)

EXAMPLE 13

TREND AND SEASONAL COMPONENTS

Assume Xt = mt + at + γt with

  • E(γt) = 0
  • mt = at + b (Linear trend)
  • at = at+d (a is the period) such that
  • d = 2q + 1

d = q + 1

j=1qa + j = 0

Consider Zt = 1 / 1 + 2q (Xt-q + Xt-q+1 + .... + Xt+q-1 + Xt+q)

a step backwards

Let's plug μ in Zt and we get

Zt = 1 / 1 + 2q Σqj=q mt+j + Σqj=q at+j = 0

(from 1 hypothesis)

Dettagli
Publisher
A.A. 2017-2018
90 pagine
SSD Scienze matematiche e informatiche MAT/06 Probabilità e statistica matematica

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher Chiara 1995 di informazioni apprese con la frequenza delle lezioni di Statistics for stochastic processes e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Università degli studi di Torino o del prof Di Nardo Elvira.