Anthrax606
Genius
1 min. di lettura
Vota 3 / 5

Concetti Chiave

  • L'esercizio riguarda il primo principio della termodinamica applicato a un cilindro con pistone scorrevole contenente un gas ideale.
  • Il gas subisce un'espansione isoterma reversibile, mantenendo costante la temperatura durante il processo.
  • La pressione iniziale è 6 bar, mentre la pressione finale è 2 bar, con 6 moli di gas coinvolte.
  • Il calore scambiato durante la trasformazione è 12.000 J, e si utilizza questa informazione per calcolare la temperatura iniziale.
  • La temperatura iniziale del gas viene calcolata come 219 K utilizzando la formula derivata dal primo principio della termodinamica.
TERZO ESERCIZIO PRIMO PRINCIPIO DELLA TERMODINAMICA

Oggi risolveremo un esercizio del primo principio della termodinamica, in particolare ci occuperemo di risolvere un problema riguardante un cilindro chiuso da un pistone. Il testo del problema è il seguente:

Un cilindro a pareti diatermiche diposto orizzontalmente e chiuso da un pistone scorrevole senza attrito contiene

[math]η=6[/math]
moli di gas ideale in equilibrio alla pressione
[math]ρ_{1}=6\ bar[/math]
e alla temperatura
[math]T_{1}[/math]
. Il gas subisce un'espansione isoterma reversibile fino a raggiungere la pressione
[math] ρ_ {2}=2\ bar[/math]
. Sapendo che il calore scambiato con l’ambiente durante la trasformazione è
[math]Q=12000J[/math]
, si determini il valore della temperatura
[math]T_{1}[/math]

Poiché si tiene in considerazione un gas ideale, sappiamo che

[math]U[/math]
dipende soltanto da
[math]T[/math]
. L'esercizio parla di una trasformazione isotermica
[math]ΔU=0[/math]
, la variazione dell'energia interna è nulla. Pertanto, per il primo principio della termodinamica possiamo scrivere che:

[math]=>\ Q=L=ηRT_{1}\ ln \frac{V_{2}}{V_{1}}=ηRT_{1}\ ln \frac{ρ_{1}}{ρ_{2}}[/math]

Una quantità che sicuramente è maggiore di

[math]0[/math]
perché la pressione
[math]ρ_{1}[/math]
è maggiore della pressione
[math]ρ_{2}[/math]

[math][ρ_{1}>ρ_{2}][/math]

Non resta che esplicitare, da questa relazione, la temperatura

[math]T_{1}[/math]
. Essa sarà data da:

[math]=>\ T_{1}=\ \frac{Q}{ηR\ ln(ρ_{1}/ρ_{2})}=\ \frac{12000}{6*8,31*ln3}=219k[/math]

Domande e risposte

Hai bisogno di aiuto?
Chiedi alla community