Che materia stai cercando?

Riassunto esame Metodi Matematici per l'Energetica, docente Mostacci, libro consigliato Problemi Matematici della Fisica e dell'Ingegneria, G. Spiga

Riassunto per l'esame di Metodi Matematici per l'Energetica, basato su appunti personali e studio autonomo del testo consigliato dal docente Mostacci: Problemi Matematici della Fisica e dell'Ingegneria, G. Spiga. Gli argomenti trattati sono i seguenti: analisi complessa Numeri complessi - significato e rappresentazione; funzioni complesse di variabile complessa, funzioni olomorfe ed analitiche; estensione... Vedi di più

Esame di Metodi matematici per l'energetica docente Prof. D. Mostacci

Ulteriori informazioni

ACQUISTATO

1 volte

PAGINE

25

PESO

39.99 MB

PUBBLICATO

+1 anno fa


DESCRIZIONE APPUNTO

Riassunto per l'esame di Metodi Matematici per l'Energetica, basato su appunti personali e studio autonomo del testo consigliato dal docente Mostacci: Problemi Matematici della Fisica e dell'Ingegneria, G. Spiga. Gli argomenti trattati sono i seguenti: analisi complessa Numeri complessi - significato e rappresentazione; funzioni complesse di variabile complessa, funzioni olomorfe ed analitiche; estensione delle principali funzioni al campo complesso (esponenziale, trigonometriche, iperboliche, logaritmo). Integrazione nel campo complesso; formula e teorema di Cauchy; serie nel campo complesso: serie di Taylor e di Laurent; singolarità.Teorema dei residui e sue applicazioni al calcolo degli integrali; integrali di funzioni polidrome.
Serie di Fourier - problema di Dirichlet e teorema di Poisson; il metodo della separazione delle variabili, e le serie seno e coseno; applicazioni del teorema di Poisson. Le trasformate - la trasformata di Fourier; la trasformata di Laplace; soluzione di problemi con l'ausilio delle trasformate. Spazi funzionali - spazi di Hilbert, sviluppi in serie di funzioni ortogonali. Cenni sulle funzioni speciali. Cenni sulle equazioni integrali - equazioni di Volterra e di Fredholm; metodi risolutivi.
Equazioni differenziali alle derivate parziali (PDE): Equazioni del 1° ordine; principali famiglie del 2° ordine (paraboliche, iperboliche, ellittiche). Metodi risolutivi diretti; confronto con le soluzioni tramite trasformate. Probabilità e statistica: Richiami di probabilità - variabili aleatorie discrete e continue; distribuzioni e densità di probabilità, principali distribuzioni e densità: binomiale, poissoniana, gaussiana; valori attesi, media, varianza, teorema del limite centrale, legge debole dei grandi numeri. Statistica - principali test di ipotesi: Poisson, Z, Chiquadro, cenni di statistiche non parametriche. Errori di tipo A e B, statistica nelle misure, livello minimo di rivelabilità.


DETTAGLI
Corso di laurea: Corso di laurea magistrale in ingegneria energetica
SSD:
Università: Bologna - Unibo
A.A.: 2015-2016

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher Marco8Ing di informazioni apprese con la frequenza delle lezioni di Metodi matematici per l'energetica e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Bologna - Unibo o del prof Mostacci Domiziano.

Acquista con carta o conto PayPal

Scarica il file tutte le volte che vuoi

Paga con un conto PayPal per usufruire della garanzia Soddisfatto o rimborsato

Recensioni
Ti è piaciuto questo appunto? Valutalo!

Altri appunti di Metodi matematici per l'energetica

Analisi complessa - Elementi
Dispensa
Analisi complessa - Integrali complessi e Cauchy
Dispensa
Trasporto di neutroni
Dispensa
Analisi complessa - Elementi
Dispensa