vuoi
o PayPal
tutte le volte che vuoi
Y B Y B Y ut
−2
t 0 1 t−1 2 t
- Forecasting error
- Write the expression of RSMFE
√ 2
[ ]
^
( )
−
RMSFE= E Y Y
+1
T T+ 1∨T
- Write the expression of the RMSFE pseudo so called
Chose a date P for the start of the poos sample
o Re-estimate the model every period s = P-1, … , T-1
o Compute the poos forecast for S+1= P,…,T
o ~ ^
Compute the poos forecast errors =Y -
u
o Y
s+1 s+1 s+1|s
Compute the average of the squared forecast errors and then take its squared root
o
- Construct the forecast interval
- autocovariance and autocorrelation of order j
- Derive the variance
- X is exogenous
if E(u |X , X , X ,...) = 0.
t t t–1 t–2
- Strict Exogeneity
( past, present, and future) X is strictly exogenous if E(u |..., X , X , X ,...) = 0
t t+1 t t–1
- Make an estimation of this model
β β
e rappresentano l’elasticità della produzione rispettivamente al capitale
1 2
ed al lavoro. Ciò significa che ad una variazione percentuale in K o L rispettivamente
β β
comporta una variazione in Y pari a % o %.
1 2
- Sample autocorrelations
The jth sample autocorrelation is an estimate of the jth population autocorrelation:
- write an AUTO REGRESSIVE MODEL of second order
=β + + +u
Y β y β y i
−2
t 0 1 t−1 2 t
- write an ADL(2,2)
=β + + + + +u
Y β y β y β x β x i
−2 −1 −2
t 0 1 t−1 2 t 3 t 4 t
β β ?
- what represents and (D is a binary variable)
0 1
=β +
Y β Di+ui
t 0 1
β represents the expected value for a student when D=0
0
β rapresentes the difference between the expected value E(Yi|Di=1) – E(Yi|Di=0)
1
- Granger causality
In the 06 self evaluation (ex 4 point c) the test is commonly know as granger causality test. This
name can be misleading because it is not a causality test. It is a forecasting ability test.
- Write the dynamic and cumulative multipliers and draw the graph
Lag number Dynamic multipliers CI ±
0 1.2 1.2 1.96*0.3
±
1 0.3 0.3 1.96*0.2
±
2 0.1 0.1 1.96*0.2
±
3 -0.1 -0.1 1.96*0.2
Lag numbers Cumulative DM CI ^
0 1.2 ±
1.2 1.96*SE( δ )
1
^
1 1.5 ±
1.5 1.96*SE( )
δ 2
^
2 1.6 ±
1.6 1.96*SE( δ )
3
^
3 1.5 ±
1.5 1.96*SE( )
δ 4
Th cumulative dynamic multipliers can be estimated directly using a modification of the original
regression.
The SE needed to computed the required SE are therefore:
^
SE( )… where
δ 1
- Omitted variable
>0 > 0
2 2
Over Under
Cov( , )>0
2 1 Under Over
Cov( , )<0
2 1
- Exercise chapter 9
This assumption implies that measurement error dues not comove with the true unobserved
variable. This might not be the case if the difference between the true and the reported value
depends on the true value.
- Chapter 15