Anteprima
Vedrai una selezione di 8 pagine su 33
Appunti di tutte le lezioni del corso Advanced Manufacturing Processes Pag. 1 Appunti di tutte le lezioni del corso Advanced Manufacturing Processes Pag. 2
Anteprima di 8 pagg. su 33.
Scarica il documento per vederlo tutto.
Appunti di tutte le lezioni del corso Advanced Manufacturing Processes Pag. 6
Anteprima di 8 pagg. su 33.
Scarica il documento per vederlo tutto.
Appunti di tutte le lezioni del corso Advanced Manufacturing Processes Pag. 11
Anteprima di 8 pagg. su 33.
Scarica il documento per vederlo tutto.
Appunti di tutte le lezioni del corso Advanced Manufacturing Processes Pag. 16
Anteprima di 8 pagg. su 33.
Scarica il documento per vederlo tutto.
Appunti di tutte le lezioni del corso Advanced Manufacturing Processes Pag. 21
Anteprima di 8 pagg. su 33.
Scarica il documento per vederlo tutto.
Appunti di tutte le lezioni del corso Advanced Manufacturing Processes Pag. 26
Anteprima di 8 pagg. su 33.
Scarica il documento per vederlo tutto.
Appunti di tutte le lezioni del corso Advanced Manufacturing Processes Pag. 31
1 su 33
D/illustrazione/soddisfatti o rimborsati
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Estratto del documento

INTRODUCTION:

Growth/productivity change in last 50 years:

  • Big growth from new manufacturing revolutions:
  • 1850 → steam engine (operative energy)
  • 1900 → mass production model (Ford)
  • 1970 → automation
  • IV manufacturing revolution → advanced robots

Technology & software → productivity

Opportunity New→ flexibility → reconfig

  • Different forms of energy: Manual, mechanical, chemical (reactive)
  • New and advanced materials (ceramic, carbon fiber...)
  • New or different products → few parts, miniaturization, higher tolerance, easier assembly
  • Reduce fixed time cost and timer very expensive better

Phenomenon reality → Model = description → Mathematical modeling → Physical modeling

  • “black box” → empirical modeling

THERMAL MODEL

heat transfer = temperature difference

Fourier Law

conduction

jxqx = -K ∂T/∂x

K = thermal conductivity [W/m°C]

Newton Law

convection

qc = h(Ts - T) h = convection coeff [W/m²K]

assumptions

K constant; K=K(T) no

isotropic and homogeneous material (constant volume, temperature energy)

energy balance

thermodynamic law => Ein + Ep - Eout = Es

equation in form of energy conservation

T(x,y,z,t) 3D problem of energy conservation

∂²T/∂x² + ∂²T/∂y² + ∂²T/∂t² = 1/α ∂T/∂t

x = thermal diffusivity [m²/s] = K/ρCp

(T(x,t)) ∝ I eliminate heat flow ∝ II eliminate ∝ ∂T/∂t

ΔT(x,t) = I eliminate heat flow

ΔT(x,t) = II eliminate ∝ ∂T/∂t/(specific heat capacity) ∝ ∂T(x,y,z,t) - T00(t) = -∂T/∂x

T(x,t) = T(x,tg)

Initial heat source mean internal neutron speed

Tp = T constant

isotropic and homogeneous material ∂²x = ρ/α ∂x/∂t

same thermal and chemical property of material

No internal heat source

1D semi infinite geometry *0 x

pure conduction, no convection or radiation

T(x,0) T

To(x,t)

Boas heat flow po and rich t

T(x,t) = Y0√(x/√αt) ierfc {√(x/√αt) * f-1}

ierfc = integral of normalized Gaussian function

erfc = complementary error function

ierfc = integral complementary error function

D = √(αt)1/√π

Mutual distance between material affected by heat source

Laser Source

λCO2 = 10600 nm

P = 1.7 - 6 KW

ηCO2~5 - 15%

Nd:YAG = 1064 nm

M23 = 2; pulse amp

P = 100 W

η = 3 - 8%; diode pumped

RPP cK23: 3.0

M23 Nd:YAG = 1064 nm

P = 6 KW

RThz~10

Yb-glass = 1040 or 1020 nm or 1064 nm M2 Y

P = 6 KW RThz~40%

λdisc = 940 nm

Pave = KW - Pmax = 6 KW Pdisc~40%

λgas source = CO2

He explained, energized and charged each carbon dioxide, easy to be excited, can relax and vibrate so reducing pairs excitation rates or energy level:

  • E0 equilibrium
  • E2 symmetric stretching mode
  • E3 bending mode
  • E4 asymmetric stretching mode

He = 45%: good heat conduction and so dispersion effect

N2 = 45%: electric current can't excite directly, CO2 so N2 is excited and through collision excites CO2 atom

CO2 = 10%: active medium

M23 ηCO2 = 10600 nm

M2 Y1 e

λCO2 = 10600 nm

P = 1.7 - 6 KW

Semiconductor Source - Diode

  • Top = 3GAS ➞ compound engineered with vacuum (metal) of electrons
  • Bottom = ARCAPS ➞ compound engineered with extra electron

N-P junction with mirrored surface

aluminium, gallium, arsenide

When current is applied, electrons extra and holes meet & junction release photon. This phase encourages release photon. Other holes and electrons coupling, diverge and release their own photon with same, phase, direction.

Influence of Energy

- Low thickness (t1 < 10mm)

  • High velocity ➔ low oxidation
  • Low velocity ➔ more oxidation
  • N2 (O2) and (H2) (except)

- High pressure ➔ Reweld

tl ➔ spread ➔ less fusion

I = AbsP . ds = dq(t1 = 0) ➔ I = I

- Low density

Reactive Fusion Cutting

  • High thickness (t1)
  • High velocity ➔ maximum
  • Density ➔ cutting possibility
  • O2 N2 + O2 ➔ oxide

Only value above ➔ keep

If so, then we have an extra term

Thus by oxidation (exothermic reaction):

                   V ➔ ➔ oxidations (steady for reactivefusion cutting)

       Variation of surface &right; importantbecause surface receptive

       Equation I ➔ V because AbsP       ➔ Oxide layer and improve                           absorption

Melt Capacity Model

Freezing rateAbsP = ρ(cp(TM - T1) + L + V + (M)) = const

V        functional variables

Q ➔ thermal capacities/multiple uses

U ➔ easier heat of fusion

U = Easier heat of vaporization

I^i ➔ constant

If we have more power vectorone faster in higher power

HP

  • No conduction
  • No convection
  • No radiation in beam
  • Only W' variable

- TM = TV - all fixed numbers

We can change the power with avery higher number

Comparison cutting with ω2

On Earth, and materials that cannot melt (wood) or lower TM, ➔ it is more used for metals — beam energy

HP

        radial off distance

If Φ ➔ reactive fusion cutting ➔ faster on surfaceIf Φ < S ➔ vaporization and melt and ➔ faster inside piece                                  compare abruption length to bite                                 distribute absorbance

We need on high gravity enough to maintain a constant distancebetween laser head and surface, because it loses more significantly even in flat

PAbs = const      11 (ρc2, ρLρo, .dsk) d Ψ = const

  • ADL ➔ V . P
  • romeo (car stereotype) -> model estimate

    leak initial position -> energy required to remove 1 electron from an atom

    - xye thermal commitment (T) -> reference tempo of energy

    leotinity -> tendency to react with work pigs (ex 0-vation)

    ΔH -> Σoints atltright | Σ < 200 hooked for antonance atries, we must excite energy from qxiation, but plus excitation in chair

    N2 estimate -> detect nuisance in leo enter pooring, for the sis

    A. (air pal) -> mixed inquirial phase because cow ionization pointwise

    H35 (mix A1-H35: F H height is escaption) -> t > 10mm deposit present because highly exploits

    continued of as is

    Pac makes qxidetions and attintions, HAZ has limited force on the workpiece

    ABS split reomics, con ous oep wilowers, in ole contsertous

    We don't hove ou height equiny new as fairs, because the voltage V is an identical measure op need-off dinnonia

    This equinix air inturdition equinix leow > 5"mapper limood

    pu ednierisuf

    it -> dow piece increase

    increase

    wee Sour snloes

    V speed

    bull inflisio

    kiger ilision

    " скушman" и "anvator" motion

    kerf

    regail indication depends on totic aitation

    from workpiece, because enclosed halo a plumo airion

    HAZ -> coupons oncal

    bitrim of returns !

    Dettagli
    Publisher
    A.A. 2019-2020
    33 pagine
    SSD Ingegneria industriale e dell'informazione ING-IND/16 Tecnologie e sistemi di lavorazione

    I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher Polistudent di informazioni apprese con la frequenza delle lezioni di Advanced manufacturing processes e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Politecnico di Milano o del prof Previtali Barbara.