Anteprima
Vedrai una selezione di 10 pagine su 229
Vehicle dynamics Pag. 1 Vehicle dynamics Pag. 2
Anteprima di 10 pagg. su 229.
Scarica il documento per vederlo tutto.
Vehicle dynamics Pag. 6
Anteprima di 10 pagg. su 229.
Scarica il documento per vederlo tutto.
Vehicle dynamics Pag. 11
Anteprima di 10 pagg. su 229.
Scarica il documento per vederlo tutto.
Vehicle dynamics Pag. 16
Anteprima di 10 pagg. su 229.
Scarica il documento per vederlo tutto.
Vehicle dynamics Pag. 21
Anteprima di 10 pagg. su 229.
Scarica il documento per vederlo tutto.
Vehicle dynamics Pag. 26
Anteprima di 10 pagg. su 229.
Scarica il documento per vederlo tutto.
Vehicle dynamics Pag. 31
Anteprima di 10 pagg. su 229.
Scarica il documento per vederlo tutto.
Vehicle dynamics Pag. 36
Anteprima di 10 pagg. su 229.
Scarica il documento per vederlo tutto.
Vehicle dynamics Pag. 41
1 su 229
D/illustrazione/soddisfatti o rimborsati
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Estratto del documento

THANKS

Any question?

Contacts:

alessandro.tasora@unipr.it

Alessandro Tasora 25

TIRES

Alessandro Tasora

Name Surname

1.

INTRODUCTION

Basic concepts of tires

Alessandro Tasora 2

Why tire models?

• Vehicle dynamics: needs loads on vehicle body to write an ODE/DAE

• Tire forces are the most important loads

• We need a way to compute F (normal, lateral, longitudinal) from tire state (slip

angle? Longitudinal slippage? Temperature? …)

= { , , } =

Alessandro Tasora 3

Tire footprint forces

• The contact is not a point – it is a patch.

• In most models, simplified to a point.

• Experimental devices can measure pressure, forces, deformation, etc.

Image credits: Goodyear Wrangler

Alessandro Tasora 4

SAE tire reference

• Most general case: a “wrench”, 6 scalars:

three forces ,

• Longitudinal

• Lateral

• Vertical (normal)

three torques

• Overturning moment

• Rolling resistance

• Aligning torque

• ,

Note the slip angle

inclination angle, radius {, } = { , , , , , } =

Alessandro Tasora 5

Simplified disk model

• Assume no thickness

• Assume local lateral elastic deformation

Alessandro Tasora 6

Simplified disk model

• Enough for studying lateral forces and slip angle

• Elastic lateral deformation

• Slip angle > 0 even if local contact ≤

satisfies static Coulomb friction condition

• The “softer” the rubber, the lower the

cornering stiffness, even if good adhesion

Alessandro Tasora 7

Simplified disk model

• Experimental results

Alessandro Tasora 8

Tire lateral forces

Effect of slip angle

Alessandro Tasora 9

Tire lateral forces

• Effect of normal force ( right: normalized )

• Note! If it was basic Coulomb friction, all curves in the plot at the right should be the same

• Instead, too high normal force usually leads to (a bit) lower lateral G forces, for same tire

Alessandro Tasora 10

Tire lateral forces

• Effect of normal force

• Note! If it was basic Coulomb friction, all curves in the plot at the right should be the same

• Instead, too high normal force usually leads to (a bit) lower lateral G forces, for same tire

Alessandro Tasora 11

Tire lateral forces

• Effect of inclination angle (camber)

• From rear:

Alessandro Tasora 12

Longitudinal force

• Tractive / breaking force

Alessandro Tasora 13

Longitudinal force

• Effect of Slip Ratio SR

• SAE definition:

• Free rolling: SR = 0

• Locked braking: SR=-1

Alessandro Tasora 14

Longitudinal force

• Alternative definitions of Slip Ratio SR, for generic 3D case

• SAE :

• Calspan TIRF

• Goodyear

• Pacejka

• Sakai

• Note: all have singularities! Divisions by zero…

Alessandro Tasora 15

Combined longitudinal-lateral

• Sakai plots:

Alessandro Tasora 16

Combined longitudinal-lateral

• Increasing slip ratios will decrease

the ability of generating high

lateral corces

Alessandro Tasora 17

Combined longitudinal-lateral

• In a single plot!

The friction circle diagram:

• For a fixed vertical load – if different

loads, one needs a family of plots

• Similar to the friction disc of

the Coulomb friction model

• Not perfectly circular (oblated)

• Tells easily which is the max force

that a tire can transmit to the

ground (see perimeter)

Alessandro Tasora 18

Aligning torque

• Effect of slip angle and load:

• 

Practical result: “trail” torque on

steering wheel driver feedback:

Alessandro Tasora 19

Rolling resistance torque

• Caused by

• Hystheresis

• Dirt road

• Brushing effects in tire threads

• Other

• Macroscopic effect: the tire contact

point, w.resultant of normal pressures,

is moved ahead by a rolling parameter

Rolling coefficient , for

=

• Rolling resistance torque, linearizing:

=

Alessandro Tasora 20

1.

TIRE MODELS

Introduction to numerical modeling of tires

Alessandro Tasora 21

Classification

• Which is the goal? Implement an algorithm to compute:

{, } = { , , , , , } =

• Empirical models (LUT)

• Only experimental data, stored in Look-up table (LUT) to be interpolated at run time.

• Very fast, but need to repeat experiments if tire parameters change

• Semi-Empirical models

• Based on fitting experimental data with some parameters (ex. Pacejka “magic formulas”)

• Very fast, often used in real-time simulators

• Physical models

• Can capture deformation, high frequency vibrations, 3D contact effects, etc.

• Based on Finite Elements or similar tech with many degrees of freedom, slow to

compute, for tire design rather than vehicle dynamics

Alessandro Tasora 22

Coulomb

• The simplest semi empirical model.

• Only friction coefficient is needed.

• Unrealistic because assumes perfectly rigid tires.

• Can be used to study AGV robots, etc.

• Could work with obstacles (curbs, etc.), multiple contact points

Alessandro Tasora 23

FTIRE

• One of the oldest tire models

• Pros:

• Simple formulas

• fast to compute

• Only 9 parameters

• Limitations:

• No camber effect

• Constant cornering stiffness with

changing load

Alessandro Tasora 24

Pacejka

• Based on “magic formulas” that approximate the empirical plots, ex.

• Parameters adjusted by fitting experimental data

• Very fast to compute, quite realistic Image credits: www:racer.nl

Alessandro Tasora 25

MF-Tire

• Based on Pacejka formulas

• Licensed by Delft as ready-to-use code

• Magic Formula slip characteristics

• Advanced non-linear relaxation effects

• Single point tyre-road contact

• Combined slip estimation possibilities

• Inflation pressure effects

• OpenCRG road modelling

Alessandro Tasora 26

MF-Swift

• Extends MF-Tire

• Licensed by Delft as ready-to-use code

• Adds generic 3D obstacle enveloping and tyre belt dynamics

• Highlights:

• Magic Formula slip characteristics

• Unique advanced contact model for uneven roads

• Rigid ring model for representing tyre dynamics

• Parking and turnslip

• Inflation pressure effects

• OpenCRG road modelling

• Usable up to 100Hz effects

Alessandro Tasora 27

TMeasy

• Semi-empirical

• Fast to compute

• Allows 3D terrain

• Allows parking, stand still

• First 2 eigenmodes are simulated

• See Prof. Georg Rill book and website

Image credits: www.tmeasy.de

Alessandro Tasora 28

FTire

• Licensed ready-to-use code

• Physically-based model

• Very advanced, up to 250Hz effects, 1mm resol.

• Different degrees of fidelity, up to 3D deformations,

thermal effects, etc.

• Runs in hard-real-time

Image credits: www.cosin.eu

Alessandro Tasora 29

CDTire

• Licensed code, from Fraunhofer

• CDTire/RT real time version:

• flexible belt model

• scalable belt discretization

• local brush type contact model

• real-time capable

• accurate in frequency range up to 150Hz Image credits: https://www.itwm.fraunhofer.de

Alessandro Tasora 30

CDTire

• Licensed code, from Fraunhofer

• CDTire/3D physically based version:

• complete 3D shell based model

• separate modeling and parameterization

of all functional layers of a modern tire

• includes dedicated models for belt,

carcass, cap plies and tread

• capturing of belt/rim contact (ground out)

• flexible rim support

• dedicated local brush type contact model

• handle inflation pressure variations

• temperature model and cavity model

• applicable on arbitrary 3D road surfaces

• can be adapted to a motorcycle tire Image credits: https://www.itwm.fraunhofer.de

Alessandro Tasora 31

THANKS

Any question?

Contacts:

alessandro.tasora@unipr.it

Alessandro Tasora 32

AERODYNAMICS

Alessandro Tasora

Name Surname

1.

INTRODUCTION

Basic concepts of aerodynamics for vehicle dynamics

Alessandro Tasora 2

Why aerodynamics?

• Negligible at low speeds

• Relevant loads on vehicle at high speeds

• 

Negative: drag less autonomy

• 

Negative: noise less comfort

• 

Positive: airfoils downforce higher performance in lateral dynamics

• Highly nonlinear effects

• How to estimate aero effects?

Alessandro Tasora 3

Approaches

• Analytical (only for simple shapes)

• 

Experimental wind tunnels

• Expensive

• If scaling, must conserve at least

Reynolds number:

see also Strouhal number etc. Credits: Daimler, DE

• 

Numerical CFD software

• CPU intensive

• As for all software:

“garbage in – garbage out” rule. Do not

misuse them. Credits: OpenFOAM software, at https://sourceforge.net

Alessandro Tasora 4

Concepts

• Static pressure p

• Dynamic pressure q

Alessandro Tasora 5

Concepts

• Total pressure H

• Pitot tube

• To compute airspeed V

Alessandro Tasora 6

Pressure distribution

• Design airfoils so that speed is different on the upper/lower side

• Integrate pressures over surfaces, obtain aerodynamic forces

• Exploit this to generate

• 

Lift airplanes

• 

Downforce racing cars

Alessandro Tasora 7

Separation, turbulence

• Ops! Sharp corners cause separation and turbulence

• Turbulence and vortexes not always a bad thing…

Alessandro Tasora 8

Drag coefficient

• Drag coefficient, a macroscopic measure of “ho

Dettagli
Publisher
A.A. 2023-2024
229 pagine
SSD Ingegneria industriale e dell'informazione ING-IND/13 Meccanica applicata alle macchine

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher lorebarta10 di informazioni apprese con la frequenza delle lezioni di Dynamics and compliant control of electric vehicles e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Università degli Studi di Parma o del prof Tasora Alessandro.