Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
CH1 + Constant voltage CV
VCH1 = 10V
ICH1 = 20mA
ICH = ICH1 + ICH2
Increasing ICH2 = 50μA, we measured ICH = 0.18A
Why we have some voltage difference? VCH1 = 10V, VCH2 = 9.98V
CH2 + Constant current CC
ICH2 = 1mA
VCH2 = 9.98V (tiny difference)
CH2 used as a voltmeter
ΔV
ΔV (due to resistance across wires)
This phenomenon is significant for critical values of current
VR = VCH1 - Rw·I
- LAB ACTIVITY
- 2 DC/DC converters
- linear regulator
- switching regulator
HEAV: ALL: CH1 in
ΔVCH1 = 10V
Therm 28.2.2024
- 90% 100W
- 95% 95W out
Ploss = PIN - POUT and γ = POUT / PIN (efficiency)
Half dissipated power!
RTH: Pdis, important term to consider!
Ploss = (PIN - POUT) ⋅ POUT
POUT = POUT (1/η - 1)
POUT = POUT (1-1/η)
depends on the cooling system:
ΔT = RTh ⋅ Pdis
POUT = PDIS (η/(1-η))
efficiency of the circuit
All currents and voltage will be periodic. So we have
ν(t) = ν(t+T0) since T0 = switching period
i(t) = i(t+T0) and fs = 1/T0 switching frequency
ν(t) = ν(t+T0) = a0 + ∑1n ai ⋅ sin(2πω/ T0 ⋅ t) + ∑1n bi ⋅ cos(2πω/ T0 ⋅ t)
ν̂ = harmonic component of the signal (AC)
average value of ν(t): a0 = 1/TA ∫0TA ν(t) dt = V
DC component of the signal
ν(t) = V + ν̂(t)
ΔiL represents the peak-to-peak variation
ripple iL = ΔiL/IL = 50%
iMAX = 3A
iMIN = 1A
IL = 2A
ΔiL = 1A
ν̂L = îL - IL
figure of merit that shows how close we are to DC components
Iload > IRA → Iin ≡ Iout
Vout constant
Vin →
So we have
η = Vout Iout/Vin Iin
50% efficiency
Plost of power: thermal dissipation
η ∝ 1/Vin
Switching regulator
η = Vout Iout/Vin Iin ≈ constant
in order tokeep the sameefficiency
As Vin increases, Iin decreases and
vice-versa; the goal is to keep the efficiency
as constant as possible.
Switching regulator can regulate the output voltage introducing a
small ripple waveform superimposed over a DC component.
Having a higher efficiency, the switching regulator can operate at lower
temperatures (at a given power) compared with the linear regulator.
The presence of switching mechanisms can introduce important noise
contributions. The linear regulator can be preferred for the absence of noise.
Also, it provides more stable output voltage, avoiding ripple.
R
V = V(L)
t
Vg
2nd order filter with
η = 100% (no dissipation!)
√(ripple
R + Cf) ≈
noise
approximation)
η = 100%
(theoretically!)
STEP-DOWN or BUCK
CONVERTER
DC/AC
Conversion performed by SPDT η = 100%, no power dissipation
ΔV/V = 1/16 * 1/LC * Td * D
ripple = 1/16 * 1/LC * fsw
Ripple equation obtained by small ripple approximation. If the ripple is high, the circuit needs to be analyzed in a different way.
D << 1
cannot be changed due to target output voltage
It's possible to act on these parameters.
↓ lower when L or C (or both) are increased.
↓ lower quadratically when the frequency switching is increased.
∅ from 2/3 and 2 for the same ripple.
The limitation of increasing fsw is the semiconductor device.
Boost Converter (Step-up)
VL = VG - D + (VG-V) * D'
| = VG - V' D' = ∅
Balance Equation
V = VG/D' = VG/1-D
The output V > VG (since 0 < D < 1)
For what concerns the current:
IL = IG
If η = 100% (true under our assumptions)
η = V * I / VG * IG = 1
since V/VG = 1/D'
then I/IG = D'
I = D' * IG = D' * IL
IL = I/D' = V/RD'
About ic, remember that depends by the converter.
ic = il2 - I
ic = -IL + ΔiL - I = -0.23 A at the beginning of switching period
ic = IL + ΔiL - I = 0.056 A at the end of switching period
The two triangles are similar. So, we can say
0.23tA =
ΔQ = 1/2 0.23 ∙ 2.91CtA = 0.39 nC
Δv = ΔQ/2C = 0.34/2∙10-5 = 17 mV
And finally
ripple = 17 ∙ 10-3/4 = 0.42%
Everything treated until now is correct considering an ideal SPDT. But now we will understand how the things will change considering real cases.
n-channel MOSFET
VGS > VTH ON
NORMALLY OFF TRANSISTORbetter behavior in case of error
Bidirectional switch
the charge of battery grows when the light is applied; when there is no light the battery will discharge. A new diode must be applied.
What happens when the current, in 2, turns negative?
VL = (Vg - V) D - D2 = 0
IC = IO => I = I (charge balance equation)
IC = 1/j 1/2 (D1 + D2) Ipeak VL L
2) iL? Use the schematic!
iL peak = Vg / L. DTT = 5A
D2 T = iL peak | (-L / V) = 5 9.6 / 12 = 4μs
iL peak 5
3) iC?
iC = -iF - I
iF = {0 nos on ( t < DTT )
iL mos off ( DTT < t < TP )
I = -1A
iC = -iF - I
time length → 4 / 5 → tQ / 4 = 4 / 5
height → 5
ΔQ = 1/2 ta iL peak
= 1/2 3.2 × 10-6 4 = 6.4 nC
ΔV = ΔQ / 2C = 6.4 / 2 · 10 = 0.32 V
VQ = 0.32 / 12 = 2.6 %
1) For each inductor, extract the VL equation
2) For each capacitor, extract the IC equation
3) If ig fix, then extract the Ig equation
Which are the dependent and independent variables?
Independent variables: Vg, D, VCX, IX, Ron, RL, Von, R0
VCX = VC
Copper - losses boost converter
Ig = IL
VL = 1/D [(Vg - RLIL) + (Vg - RLIL - VC)D]
IC = 1/D [-(VC)/R D + (IL - VC/R)D]
VL = Vg - RLIL - VCD
IC = ID - VC/R
Voltage controlled generator
We're in periodic waveform operation. So, VL = 0 and IC = 0