Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
COEFF. CORREL - R²
- UNIT FREE
- Correlation -> NO CAUSATION
- Measure no. of STAND. DEVIAT. that y changes by when X changes by 1 SD.
R²
- Square
- Measure of goodness of fit -> sempre positiva
- Percentage of variance of the depend. variable y explained by the model (by variation of the variables, x1, x2, ...)
- Measures the fraction of variable Yi explained by Xi (Regressors)
- Low R² -> the variation of x explain only small part of the variation in y
Other important factors influence y
- R² increases if a regressor is added, even if this NOT MEAN an improvement of the FIT of the model.
(1 - R²)
R̅² = adjusted R²
- R̅² 2 < R²
- Add 1 Regressor have 2 opposite effects in R²
(t TEST)
- IF R̅² increases -> NOT MEANS that an ADDED VARIAB is STAT. SIGN.
- High R̅² -> NOT mean that regressor are true cause of Y and have an appropriate set of regressors
- Low R̅² -> NOT IMPLY Necessor. OMITT. VAR. BIAS
LINEAR REGRESSION (1R)
Ŷi = β̂0 + β̂1Xi
- β̂0 (INTERCEPT)
- Expected Value Ŷ when X = 0
- E (Y / x = 0)
- β̂1 (dummy variable)
- difference to model
- Slope Coefficient: its effect on Y when X is increased by 1
- β̂1 = ΔŶ / ΔX
- β̂1 = Β̂1 ≥ 1
R²
- Measures of FIT (Coefficient of determination)
- 0 ≤ R² ≤ 1
- Measures the fraction of the variance Yi that is explained by Xi
- Xi good predictions Yi
Assumptions
- I error term = U LSA: E(μ / x) = 0
- (If ≠ 0 = Bias)
- IV LSA: HOMOSKEDASTIC
- E(μ2 / x) = constant
(Summary)
Hyp. Testing
Significance Test 1
- H0: β̂1 = 0 NOSIGN.
- H1: β̂1 ≠ 0 2 sided (SIG)
- H1: β̂1 ≥ 0 1 sided
- t = β̂1 / SE (β̂1)
- Decision: Reject H0
- (β̂1 ≠ SIGNIF)
|t| > tα P < α
0 ∉ C.I.
MULTI REGRESSION LIN. (1 HLR)
Ŷi = β̂0 + β̂1X1 + β̂2X2 + ...
K regressors Xi
β̂0 NO SIGNIF.
holding all other things constant
R̅² < R²
- No PERFECT MULTICOLLINEARITY (dummy variable trap)
Hyp. Testing
- Joint HYD
- H0: β̂2 = 0
- H1: at least 1 different by zero
F-Test
Confidence Interval
Interval that has (95%) probability of containing the true value of β̂1
β̂1 ± tα SE(β̂1)
p-value
- α
- C.I
- 1 sided
- 2 sided
- 1% 99% 2.58 1.28
- 5% 95% 1.645 1.96
- 10% 90% 1.29 1.64
Y = β0 + β1X
se c’è BIAS Z
de non ho incluso nel modello
Y = β0 + β1X + (λ + β2 Z)
= β0 + β1X + μ
Z è OMITT.BIAS
CORR(z, x) ≠ 0
⟷ E (z|x) ≠ 0
Adesso voglio calcolare.
CORR(μ, x) = cov(β2z, x) = β2 con(z, x)
≠ 0 ≠ 0
E(μ/x) ≠ 0
Z è ENDOGENA
NOTA:
CORR(μ, x) = E(μ/x) = 0
Z è ESOGENA
X NO CORR con μ
General IV model Conditions for valid Instruments:
- Instrument exogeneity
- corr(zm,u)=0
- Instrument Relevance:
- general: W hat, W2, ..., Wm, 1 are not perfectly multicollinear: the second stage regression could be run using the predicted values from the population first stage regression.
IV Regression Assumptions
- E(u / W2, ..., Wr, Z1, ..., Zm)=0
- (Y, X1, ..., Xk, W1, ..., Wr, Z1, ..., Zm) are I.I.D.
- X’s, W’s, Z’s and Y have nonzero, finite 4th moments
- Instruments (Z1, ..., Zm) are valid.
TSLS is normally distributed.
I PANEL DATA (TUTTI I MODELLI)
I
STRICT EXOGENEITY:
E(μi / xi1, xi2, ...) = 0
Kapranas
tutti i repressn x' i sono considerati
Esogeni ⇒ NO ENDOGENI
NO CORRELATI CON IL TERMINE DI ERRORE μi
Modello
1
FIXED EFFECT = ogni individuo/entità ha una intercetta diversa (≠ αi) diversa nel modello di popolazione
2
E(αi / xi) ≠ 0
(NO ORTOGONALI)
xit and xit CAN BE CORRELATED
Assumptions
-
Linearity
dependent variab y is linearly related to the coefficients
-
Zero Condit. Mean
E(ε_i | x_i) = 0
No relationship between the error term ε_i and the indep. variab. x_i.
estimate biased
-
No Perfect Multicollinearity
high degree of collinearity between 2 explanatory variables
(DUMMY VAR. TRAP)
-
Homoskedasticity
var (ε_i | x_i) = const
var (y_i | x_i) = const
OLS LOSS EFFICIENCY (NO LONGER BLUE)
-
No Serial Correl (Residuals Indip)
residuals must be statistically independent and uncorrelated from each other
cov (ε_i, ε_j) = 0
introduce controls for seasonality and time indicating a set of N-1 Dummy Variable