ale.tzunny
ale.tzunny - Sapiens - 500 Punti
Salva

Secante(alpha)=(2k-1)/k
con 0<alpha<(pigreco)/2

Io fatto il sistema (2k-1)/k >0 e (2k-1)\k <1 perché essendo la sec=1/cos(alpha) per il valore dato dell'angolo cos(alpha) è compreso tra 0 e 1...
Ma il risulato è diverso...mi dite dove sbaglio?
E come devo fare per capire se la secante( e ditemi già anche la cosecante) è positiva?
Grazie

Anthrax606
Anthrax606 - VIP - 27645 Punti
Salva

Ciao!
Siccome hai

[math]secx=\frac{2k-1}{k}[/math]
e sai che
[math]secx=\frac{1}{cosx}[/math]
con
[math]D:\{x \in \mathbb{R}|x \not{=} \frac{\pi}{2}+k\pi , k \in \mathbb{Z}\}[/math]
da questa relazione ottieni che
[math]\frac{1}{cosx}=\frac{2k-1}{k} \to cosx=\frac{k}{2k-1}[/math]
. Siccome il coseno assume valori che vanno da [-1;1],
[math]-1≤\frac{k}{2k-1}≤1[/math]
(che si spezza in due disequazione da mettere a sistema:
[math]\frac{k}{2k-1}≥-1, \frac{k}{2k-1}≤1[/math]
. La soluzione della disequazione sarà data dalla soluzione del sistema.
Questo topic è bloccato, non sono ammesse altre risposte.
Come guadagno Punti nel Forum? Leggi la guida completa
Registrati via email