- Matematica - Superiori
-
problema sulla piramide
SuperGaara - Mito - 120308 Punti
Sia ABCD il rombo di base, con AC diagonale maggiore e BD diagonale minore; chiamiamo E il vertice della piramide, O il punto di incontro delle diagonali di ABCD e OH l'altezza relativa ad AB in AOB.
Dal rapporto
Sfruttiamo l'equazione risolvente:
Perciò si deduce:
Applicando il teorema di Pitagora in AOB, si ricava il lato AB:
Ricaviamo il perimetro di base
Dalla formula inversa del volume della piramide retta, otteniamo l'altezza della stessa:
Ricaviamo in AOB l'altezza OH relativa alla base AB:
Ricaviamo l'apotema EH dal teorema di Pitagora applicato in EOH:
Tramite la formula, calcoliamo la superficie laterale:
Troviamo, infine, la misura della superficie totale:
La superficie totale della piramide retta considerata è di
Dal rapporto
[math]\frac{DB}{AC}=\frac{3}{4}[/math]
ricaviamo che
[math]DB=3x \qquad e \qquad AC=4x[/math]
Sfruttiamo l'equazione risolvente:
[math]Ab=\frac{DB*AC}{2}\\384=\frac{3x*4x}{2}\\384=6x^2\\x^2=64\\x=8[/math]
Perciò si deduce:
[math]DB=3x=24\;cm\\AC=4x=32\;cm[/math]
Applicando il teorema di Pitagora in AOB, si ricava il lato AB:
[math]AB=20\;cm \quad (terna\;pitagorica)[/math]
Ricaviamo il perimetro di base
[math]Pb=4*AB=80\;cm[/math]
Dalla formula inversa del volume della piramide retta, otteniamo l'altezza della stessa:
[math]EO=\frac{3*V}{Ab}=\frac{3*512}{384}=4\;cm[/math]
Ricaviamo in AOB l'altezza OH relativa alla base AB:
[math]OH=\frac{AO*OB}{AB}=\frac{12*16}{20}=9,6\;cm[/math]
Ricaviamo l'apotema EH dal teorema di Pitagora applicato in EOH:
[math]EH^2=EO^2+OH^2\\EH^2=4^2+9,6^2\\EH^2=108,16\\EH=10,4\;cm[/math]
Tramite la formula, calcoliamo la superficie laterale:
[math]Sl=\frac{P*a}{2}=\frac{80*10,4}{2}=416\;cm^2[/math]
Troviamo, infine, la misura della superficie totale:
[math]St=Sl+Ab=416+384=800\;cm^2[/math]
La superficie totale della piramide retta considerata è di
[math]800\;cm^2[/math]
.
SuperGaara - Mito - 120308 Punti
....mmm
....
Non credo sia sbagliato, insomma ho ricontrollato più volte i conti e mi sembra giusto. Se anche tu hai trovato lo stesso risultato probabilmente o sbagliamo tutti e due su di uno stesso punto (ma mi sembra difficile non accorgersene dopo un po' ), oppure è sbagliata la dicitura del libro (anche se raramente, capitano gli errori di scrittura).
Non saprei dire...a me sembra corretto così come abbiamo fatto noi
!

Non credo sia sbagliato, insomma ho ricontrollato più volte i conti e mi sembra giusto. Se anche tu hai trovato lo stesso risultato probabilmente o sbagliamo tutti e due su di uno stesso punto (ma mi sembra difficile non accorgersene dopo un po' ), oppure è sbagliata la dicitura del libro (anche se raramente, capitano gli errori di scrittura).
Non saprei dire...a me sembra corretto così come abbiamo fatto noi

SuperGaara - Mito - 120308 Punti
Il procedimento, e anche il risultato, sono giusti!
Le cose sono due:
1) il libro ha scritto papere per papaveri
2) stella ha sbagliato a scrivere qualche dato nella traccia (e se non te decidi a scrivere le tracce paro paro come so sul libro, giuro che faccio in modo che tu non possa + postare qua sopra)
Cmq, Gaara, come al solito bravo!
SuperGaara - Mito - 120308 Punti
Ovviamente faccio una precisazione, stella!
Vorrei che tu scrivessi con precisione la traccia non perché altrimenti non la capisco (ho capito quello che vai cercando nell'altro post da ieri
) ma perché tu possa essere certa che non ci siano fraintendimenti in quello su cui vuoi chiedere aiuto!
Semplicemente, visto che il testo è scritto in un modo, tu riportalo esattamente com'è: in questo modo sarai certa che ciò che vuoi sapere è proprio ciò che il problema richiede, e non una delle tante possibili interpretazioni. La Matematica è precisa, non "vorrei" o "può darsi".
Cmq, sappi che siamo sempre qui per aiutare!
Aspetto la traccia dell'altro problema, allora!
Vorrei che tu scrivessi con precisione la traccia non perché altrimenti non la capisco (ho capito quello che vai cercando nell'altro post da ieri

Semplicemente, visto che il testo è scritto in un modo, tu riportalo esattamente com'è: in questo modo sarai certa che ciò che vuoi sapere è proprio ciò che il problema richiede, e non una delle tante possibili interpretazioni. La Matematica è precisa, non "vorrei" o "può darsi".
Cmq, sappi che siamo sempre qui per aiutare!
Aspetto la traccia dell'altro problema, allora!

SuperGaara - Mito - 120308 Punti
Questo topic è bloccato, non sono ammesse altre risposte.
Come guadagno Punti nel Forum? Leggi la guida completa