Raffaele96_
Raffaele96_ - Erectus - 81 Punti
Salva
Sia ABC un triangolo e P un suo punto interno. Dimostra che BPC > BAC
(suggerimento : Prolunga BP Fino a incontrare Q il lato AC e applica il primo teorema dell'angolo esterno considerando prima il triangolo BPC e poi il triangolo BQC)

Ci sto provando da un paio di ore ma non trovo la soluzione. Grazie in anticipo
nRT
nRT - Moderatore - 3301 Punti
Salva
Ciao,
lo possiamo risolvere in questo modo.


[math]
B \hat PC > B \hat QC \\
B \hat QC > B \hat AQ \\
B \hat AQ = B \hat AC \\
B \hat PC > B \hat AC \\
[/math]


Spero ti sia stato d'aiuto. Se qualcosa non è chiaro chiedi pure :)
Ciao
Questo topic è bloccato, non sono ammesse altre risposte.
Come guadagno Punti nel Forum? Leggi la guida completa
In evidenza
Classifica Mensile
Vincitori di agosto
Vincitori di agosto

Come partecipare? | Classifica Community

Community Live

Partecipa alla Community e scala la classifica

Vai al Forum | Invia appunti | Vai alla classifica

Registrati via email