aleio1
aleio1 - Mito - 18955 Punti
Rispondi Cita Salva
plauso a plum...(molto allitterante...)
SuperGaara
SuperGaara - Mito - 120308 Punti
Rispondi Cita Salva
Alla fine è quello che ho detto io...solo scritto più matematicamente :lol

Hai fatto il numero 18 plum?

La somma di tutti i numeri naturali formati da due cifre distinte è:...
MaTeMaTiCa FaN
MaTeMaTiCa FaN - Genius - 15299 Punti
Rispondi Cita Salva
SuperGaara:
Ma hai buttato a occhio anche le altre? Ce ne sono parecchie diverse dalle mie...


Un paio è probabile, ma non più di 2 o 3 buttate! Sinceramente alcune erano prpr impossibili... cose mai viste in vita mia!

plum:
(matematica, il tuo ragionamento è corretto, ma poco matematico:))


Vabbè era + ke altro un ragionamento x "confermare" la risposta di Stefano e Aleio non x trovare le soluzioni :XD
SuperGaara
SuperGaara - Mito - 120308 Punti
Rispondi Cita Salva
E' vero, alcune erano difficili tanto che le ho lasciate vuote perchè il tempo non era sufficiente per mettermi là e cercare qualche modo per farle...avrei perso troppo tempo e non sarei più riuscito a fare le altre! E comunque su alcune ci sono rimasto lo stesso troppo tempo...

Quest'anno erano più difficili dell'anno scorso però ;)
MaTeMaTiCa FaN
MaTeMaTiCa FaN - Genius - 15299 Punti
Rispondi Cita Salva
Ma si infatti, io ieri ho ripreso quelle del triennio dell anno scorso che non avevo mai fatto dato ke stavo al biennio(santooo biennio:D) ed erano molto + facili, ce n erano tipo una decina prpr semplici!
SuperGaara
SuperGaara - Mito - 120308 Punti
Rispondi Cita Salva
Vabbè se erano difficili per noi, lo erano per tutti però...staremo a vedere :lol
MaTeMaTiCa FaN
MaTeMaTiCa FaN - Genius - 15299 Punti
Rispondi Cita Salva
Eh si effettivamente!
Bhè ma le soluzioni sul sito quando le mettono?
SuperGaara
SuperGaara - Mito - 120308 Punti
Rispondi Cita Salva
Qualche giorno dopo di solito...ma non so di preciso!
aleio1
aleio1 - Mito - 18955 Punti
Rispondi Cita Salva
Gaara se non sbaglio quello a cui ti riferisci tu andava fatto così

La somma dei numeri da 10 a 99 è uguale a
[math]S_a=\frac{(10+99)\cdot90}{2}=4905[/math]

A questa somma va sottratta la somma dei numeri composti da cifre uguali quindi

[math]S_b=11+22+33+44+55+66+77+88+99=495[/math]

[math]S_c=S_a-S_b=4410[/math]

credo..
MaTeMaTiCa FaN
MaTeMaTiCa FaN - Genius - 15299 Punti
Rispondi Cita Salva
SuperGaara: A scuola l'ho lasciata perdere perchè non avevo capito come farla, però a casa ne ho trovati 3!
[math]x^2+bx-16=0[/math]

Ha soluzioni reali se
[math]\Delta \geq 0[/math]
, cioè se:
[math]b^2+16*4 \geq 0[/math]
.
Le soluzioni dell'equazione sono:
[math]x_{1,2}=\frac{-b\pm \sqrt{b^2+16*4}}{2}=\frac{-b\pm \sqrt{b^2+64}}{2}[/math]

Per essere numeri interi, vuol dire che il delta è un quadrato perfetto, cosicché la sua radice dia un numero intero e non con la virgola. I valori di b per cui viene un quadrato sono:

1) 0 -->

[math]0^2+16*4=64=8^2[/math]

2) 6 -->
[math]6^2+16*4=36+64=100=10^2[/math]

3) 15 -->
[math]15^2+16*4=225+64=289=17^2[/math]

E poi non ne ho trovati altri, anche perchè non mi viene in mente nessun'altra terna pitagorica...dunque penso siano 3 in totale...

Scusa Stè ma è da oggi che non capisco, secondo quale criterio hai iniziato a considerare proprio 6 come primo numero valido(oltre 0)??? Mica hai ft le prove cn tt i numeri??? e xke poi dopo 6 sei arrivato(presumo direttamente) a 15?? :D:D sorry ;)
klok
klok - Genius - 50567 Punti
Rispondi Cita Salva
Anke io le ho fatte,anke i anni scorsi ho sempre partecipato.Cmq sta volta ne ho lasciati 7 xkè stavo anke male, uffi ma le altre credo siano andate bn.
aleio1
aleio1 - Mito - 18955 Punti
Rispondi Cita Salva
beh penso che la terna 6 8 10 sia abbastanza conosciuta...
SuperGaara
SuperGaara - Mito - 120308 Punti
Rispondi Cita Salva
MaTeMaTiCa FaN: Scusa Stè ma è da oggi che non capisco, secondo quale criterio hai iniziato a considerare proprio 6 come primo numero valido(oltre 0)??? Mica hai ft le prove cn tt i numeri??? e xke poi dopo 6 sei arrivato(presumo direttamente) a 15?? :D:D sorry ;)

Sì, esattamente: ho fatto le prove con i primi numeri...fai presto comunque a farle...:lol

Se vuoi una motivazione più valida, allora c'è la questione delle terne pitagoriche: ricordando il teorema di Pitagora
[math]a^2+b^2=c^2[/math]
, posso scrivere la mia condizione (cioè che
[math]b^2+64[/math]
dia un quadrato perfetto) nel seguente modo:
[math]b^2+64=c^2\\b^2+8^2=c^2[/math]

Le terne pitagoriche sono quelle terne di numeri naturali per i quali vale il teorema di Pitagora. Io conosco già un numero della terna, cioè 8. Perciò posso pensare a tutte le terne pitagoriche che hanno 8 al loro interno. Ce ne sono due:

1) terna 3,4,5:

[math]b=6=3*2\;;\;a=8=4*2\;;\;c=10=5*2\rightarrow\\\rightarrow 6^2+8^2=10^2 \rightarrow 36+64=100\;vero[/math]

2) terna 8,15,17:

[math]a=8\;;\;b=15\;;\;c=17 \rightarrow 8^2+15^2=17^2 \rightarrow 64+225=289\;vero[/math]

Quindi ottengo che il mio numero b può essere 15 oppure 6. Però posso prendere anche i corrispondenti valori negativi, dal momento che il testo mi dice interi, ma non specifica se positivi. Inoltre, da non dimenticare, c'è lo 0.
In totale b può assumere 5 valori:
[math]0\;;\;\pm6\;;\;\pm 15[/math]
:)
aleio1 : Gaara se non sbaglio quello a cui ti riferisci tu andava fatto così

La somma dei numeri da 10 a 99 è uguale a
[math]S_a=\frac{(10+99)\cdot90}{2}=4905[/math]

A questa somma va sottratta la somma dei numeri composti da cifre uguali quindi

[math]S_b=11+22+33+44+55+66+77+88+99=495[/math]

[math]S_c=S_a-S_b=4410[/math]

Penso sia giusto ale ;)

Hai fatto l'ultimo esercizio?

Giovanni vuole disegnare un quadrato formato da nove caselle (tre caselle per lato) e scrivere in ogni casella un numero a scelta tra 0,1,2,3,4 in modo che fissata comunque ogni riga, una colonna o una diagonale del quadrato, la somma dei numeri presenti nelle sue caselle sia sempre uguale a 4. Quanti diversi quadrati può costruire?

Io avevo la tentazione di rispondere nessuno, ma poi ho lasciato perdere per insufficienza di tempo e prove...:asd
blood
blood - Genius - 24240 Punti
Rispondi Cita Salva
sciuz92: io se ci andassi dicono che ho sbagliato posto
ah ecco.....andiamo bene in italiano in qst sito...;) :lol:lol:lol:lol
MaTeMaTiCa FaN
MaTeMaTiCa FaN - Genius - 15299 Punti
Rispondi Cita Salva
SuperGaara: [quote]MaTeMaTiCa FaN:
Scusa Stè ma è da oggi che non capisco, secondo quale criterio hai iniziato a considerare proprio 6 come primo numero valido(oltre 0)??? Mica hai ft le prove cn tt i numeri??? e xke poi dopo 6 sei arrivato(presumo direttamente) a 15?? :D:D sorry ;)

Sì, esattamente: ho fatto le prove con i primi numeri...fai presto comunque a farle...:lol

Se vuoi una motivazione più valida, allora c'è la questione delle terne pitagoriche: ricordando il teorema di Pitagora
[math]a^2+b^2=c^2[/math]
, posso scrivere la mia condizione (cioè che
[math]b^2+64[/math]
dia un quadrato perfetto) nel seguente modo:
[math]b^2+64=c^2\\b^2+8^2=c^2[/math]

Le terne pitagoriche sono quelle terne di numeri naturali per i quali vale il teorema di Pitagora. Io conosco già un numero della terna, cioè 8. Perciò posso pensare a tutte le terne pitagoriche che hanno 8 al loro interno. Ce ne sono due:

1) terna 3,4,5:

[math]b=6=3*2\;;\;a=8=4*2\;;\;c=10=5*2\rightarrow\\\rightarrow 6^2+8^2=10^2 \rightarrow 36+64=100\;vero[/math]

2) terna 8,15,17:

[math]a=8\;;\;b=15\;;\;c=17 \rightarrow 8^2+15^2=17^2 \rightarrow 64+225=289\;vero[/math]

Quindi ottengo che il mio numero b può essere 15 oppure 6. Però posso prendere anche i corrispondenti valori negativi, dal momento che il testo mi dice interi, ma non specifica se positivi. Inoltre, da non dimenticare, c'è lo 0.
In totale b può assumere 5 valori:
[math]0\;;\;\pm6\;;\;\pm 15[/math]
:) [/quote]

Hm.. Già va meglio :):D! Penso che era il fatto delle terne che mi impediva di capire :XD

Pagine: 1234567891011

Come guadagno Punti nel Forum? Leggi la guida completa
Registrati via email