lucyrenzo
Rispondi Cita Salva
Potreste aiutari ad impostare il problema attraverso le forze agenti e il perchè dell'uso dei teoremi di conservazione? Ultimo problema dell'anno.
Uno sciatore del peso M, partendo da fermo, scivola giù per un pendio lungo d e inclinato theta rispetto all'orizzontale. Per compensare le perdite i energia per attrito, lo sciatore, ad inervalli regolari di tempo, dà un colpo di racchette, esecitando, in ciascun colpo, una forza media di m, su ogni racchetta, mentre le mani si spostano all'indietro r. Il coefficiente d'attrito è eta. Che velocità ha lo sciatore al termine della discesa e ogni quanto tempo ha dovuto dare il colpo di racchette? Buon anno a tutti voi.

p.s. ovviamente, sono disponibile per arrivarci insieme alla soluzione.
xico87
xico87 - Mito - 28236 Punti
Rispondi Cita Salva
per la velocità non credo ci siano problemi: visto che i colpi di racchetta compensano l'energia dispersa a causa dell'attrito applichi semplicemente la conservazione dell'energia meccanica come se fossi su un piano inclinato senza attrito. al resto ci devo pensare. Cherubino se passi di qua finiscilo tu
Progettista HW
Progettista HW - Genius - 2540 Punti
Rispondi Cita Salva
Cherubino è andato ad un pigiama party.
xico87
xico87 - Mito - 28236 Punti
Rispondi Cita Salva
peccato non ci abbia invitato..
un aiuto per la seconda domanda: il lavoro svolto dalla forza delle braccia deve essere uguale al lavoro dell'attrito
the.track
the.track - Genius - 12440 Punti
Rispondi Cita Salva
Beh allora dovrebbe essere così.
La velocità come ti ha suggerito xico87 è come se non fosse influenzata dall'attrito per la compensazione dovuta alle racchette. Perciò si avrà:
[math]\ v(t)=v(o)+a*t*sin\theta[/math]
ossia:
[math]\ v(t)=a*t*sin\theta[/math]
dove a*sin(theta) sta per la componente parallela al piano del vettore accelerazione.

Il lavoro svolto dall'attrito viene compensato dal lavoro svolto dalle racchette. Quindi abbiamo che:
Kr*m=Mcos(theta)*d
Dove K sta per il numero di colpi di racchette.
K=M*cos(theta)*d*eta/(m*r)
Considerando t il tempo che impiega per scendere:
L'intervallo sarà t/k
Ovviamente questo valore si riferisce al tempo che passa fra un inizio di appoggio e l'altro

Dovrebbe essere così. Se passa di qua qualcuno che ne sa di più di me e che mi dice che non è corretto cancello.
Nel frattempo in bocca al lupo e buon 2009!!

P.S.: mi scuso per un lessico non così appropriato.
lucyrenzo
Rispondi Cita Salva
Ringrazio tutti voi per l'aiuto. Ad ogni modo ho seguito il ragionamento di xico87, senza ancora riuscire a svolgere l'esercizio mediante formule, cosa che ha fatto the track. Sono agli inizi e ancora mi è ostico il ragionamento. Non sarei mai arrivata a considerare il numero dei colpi di racchetta, ad esempio. Come per "il lavoro svolto dalla forza delle braccia deve essere uguale al lavoro dell'attrito"...come faccio a tradurlo in formule? sono disordinata sia nel pensiero sia nello svolgimento. Malgrado abbia studiat non riesco ad arrivare all soluzione. Auguro, intanto, un Felice Anno Nuovo.
Ancora mille grazie.
the.track
the.track - Genius - 12440 Punti
Rispondi Cita Salva
Allora guarda dividiamo le cose in modo chiaro. Dunque sappiamo che il lavoro svolto dall'attrito è pari alla componente perpendicolare al piano del peso M per il coefficiente di attrito per la lunghezza del piano stesso; cosicché rispettare le seguenti formule:

W=F*s
dove
W=lavoro
F=forza parallela al piano
s=lo spostamento del corpo.

Fatt=P*µ
dove
Fatt=forza di attrito
P=peso del corpo (ovviamente perpendicolare alla superficie)
µ=coefficiente di attrito (dinamico nel nostro caso)

Inoltre sappiamo che:
il lavoro di compensazione per quello di attrito deve essere dato in quei momenti in cui il corpo si spinge con le racchette. Siccome non è possibile che le racchette continuino a spingere in modo continuativo abbiamo che il lavoro deve essere raggruppato in più parti ossia in quel numero di volte che il corpo si spinge. In altre parole possiamo dire questo:
scomponiamo in tanti piccoli tratti il piano; più in particolare un tratto per ogni spinta e facciamone il bilancio energetico:
abbiamo che il lavoro svolto dall'attrito è uguale allo spazio percorso dall'atleta e deve essere compensato da quello delle racchette in quello stesso spazio; quindi avremo chiamando s lo spostamento del corpo (un singolo tratto)=d/k.
Abbiamo che:
Watt=Wracc
P*µ*d/k=m*r
Nel primo tratto accede ciò e la cosa si ripete per gli altri. Se noi andiamo a sommare il lavoro dei singoli tratti svolto dall'attrito troveremo questo:
Watt=(P*µ*d/k)*k
se noi semplifichiamo ne esce:
Watt=P*µ*d
Siccome sappiamo che la forza di attrito è sempre costante in ogni singolo tratto da noi preso in considerazione possiamo sommare anche Wracc e troviamo:
Wracc=m*r*k
Se noi adesso uguagliamo le due otteniamo:
P*µ*d=m*r*k
Isolando la k che è ciò che ci interessa otteniamo:
k=P*µ*d/(m*r)

ok?
the.track
the.track - Genius - 12440 Punti
Rispondi Cita Salva
Guarda sopra che ho modificato. Se non capisci qualcosa dillo. ;)
lucyrenzo
Rispondi Cita Salva
Si, tutto ok ora. Quindi k è la risposta ad ogni quanto tempo si è dovuto dare il colpo di racchette?La formulazione della domanda mi ha fatto parecchio confondere.( non chè il problema fosse da meno!!!)
the.track
the.track - Genius - 12440 Punti
Rispondi Cita Salva
Io ho chiamato k la tua incognita per semplicità. Se vedi il risultato può essere confermato da un'analisi poco scientifica ma intuitiva:
k=P*µ*d/(m*r)
-Più il corpo pesa maggiore è l'attrito che si crea fra il corpo stesso ed il piano quindi a parità della altre variabili dobbiamo compiere più spinte
-Maggiore è il coefficiente di attrito e maggiore è la forza di attrito che si crea nella superficie di contatto perciò sempre a parità delle altre variabili dobbiamo spingere un maggior numero di volte
-Ovviamente più lungo è il piano più lavoro viene svolto dall'attrito perciò maggiore deve essere il numero di colpi per compensarlo
-Se aumento la forza di spinta mantenendo costanti le altre variabili ovviamente devo dare meno spinte per compensare il lavoro dell'attrito
-Stessa cosa vale se aumento la durata d'azione della forza. Ciò permette di svolgere maggior lavoro e quindi si necessita di spingere meno volte.
xico87
xico87 - Mito - 28236 Punti
Rispondi Cita Salva
giorgio hai fatto un piccolo errore: hai considerato che il lavoro fosse svolto da una sola racchetta.
lucyrenzo
Rispondi Cita Salva
hai perfettamente ragione. Sembra così distante la fisica e invece è tutto ciò che ci circonda;) grazie mille. Un abbraccio e ancora buon anno.
xico87
xico87 - Mito - 28236 Punti
Rispondi Cita Salva
lucyrenzo: Quindi k è la risposta ad ogni quanto tempo si è dovuto dare il colpo di racchette?

no. fingi che la racchetta fosse solo una per semplcità e guarda bene l'equazione che ha scritto track sul lavoro della racchetta e dell'attrito (Kr*m=Mcos(theta)*d): deduci che k è il numero di "racchettate". ovviamente se vuoi ripartirle in intervalli di tempo uguali devi dividere il tempo totale della discesa per il numero dei colpi, quindi t/k è la risposta alla domanda (in realtà non lo è a causa della piccola imprecisione che ho fatto presente)
lucyrenzo
Rispondi Cita Salva
certo!t/k...lo aveva già scritto in effetti. Per l'imprecisione, non occorre moltiplicare per due in quanto son 2 le racchette?
xico87
xico87 - Mito - 28236 Punti
Rispondi Cita Salva
cosa moltiplichi per 2?

ps: giorgio sei morto? non sei nemmeno su msn..

Pagine: 12

Come guadagno Punti nel Forum? Leggi la guida completa
In evidenza
Classifica Mensile
Vincitori di novembre
Vincitori di novembre

Come partecipare? | Classifica Community

Community Live

Partecipa alla Community e scala la classifica

Vai al Forum | Invia appunti | Vai alla classifica

mc2

mc2 Genius 248 Punti

Comm. Leader
Registrati via email