au94
au94 - Sapiens - 354 Punti
Rispondi Cita Salva
ciao... qaulcuno mi potrebbe risolvere questo es dove si dv calcolare il MCD e il mcm tra polinomi... x favore... dmn ho compito di matematica...! :dontgetit:con

x3-8y3z3
x2-4y2z2
2ax-4ayz

x favoreeee...! :thx
grazie mille in anticipo...!!!
issima90
issima90 - Genius - 18666 Punti
Rispondi Cita Salva
cosa non hi caito???è molto semplice!!!
au94
au94 - Sapiens - 354 Punti
Rispondi Cita Salva
non so fare la scomposizione xk la mia prof nn spiega e nn sa spiegare...
adry105
adry105 - Genius - 3918 Punti
Rispondi Cita Salva
Devi fare il m.c.d. e il m.c.m. tra queste tre:

[math]x^3-8y^3z^3[/math]

[math]x^2-4y^2z^2
[/math]

[math]2ax-4ayz[/math]

La prima è come se fosse
[math]x^3-(2yz)^3[/math]

La seconda:
[math]x^2-(2yz)^2 [/math]

La terza:
[math]2a(x-2yz)[/math]

Il m.c.d. è
[math]x-2yz[/math]
mentre il m.c.m. è
[math]2a(x^3-(2yz)^3)[/math]
BIT5
BIT5 - Mito - 28446 Punti
Rispondi Cita Salva
adry105: Devi fare il m.c.d. e il m.c.m. tra queste tre:

[math]x^3-8y^3z^3[/math]

[math]x^2-4y^2z^2
[/math]

[math]2ax-4ayz[/math]

La prima è come se fosse
[math]x^3-(2yz)^3[/math]

La seconda:
[math]x^2-(2yz)^2 [/math]

La terza:
[math]2a(x-2yz)[/math]

Il m.c.d. è
[math]x-2yz[/math]
mentre il m.c.m. è
[math]2a(x^3-(2yz)^3)[/math]

Qui c'è qualcosa che non va:

La prima

[math]x^3-(2yz)^3[/math]
è differenza di cubi e pertanto, noto il prodotto notevole
[math]a^3-b^3=(a-b)(a^2+ab+b^2)[/math]

Sarà

[math](x-2yz)(x^2+2xyz+4y^2z^2)[/math]

Il secondo è differenza di quadrati

Anche qui, noto il prodotto notevole:

[math]a^2-b^2=(a+b)(a-b)[/math]

Avremo

[math](x+2yz)(x-2yz)[/math]

Nel terzo raccogliendo a fattore comune avremo

[math]2a(x-2yz)[/math]

Pertanto:

il MCD (che altro non è che il prodotto dei fattori che si presentano in TUTTI i polinomi sarà

[math]x-2yz[/math]

Mentre il mcm (che altro non è che il prodotto dei fattori, presi una volta sola con l'esponente più alto tra tutti)

[math]2a(x-2yz)(x+2yz)(x^2+2xyz+4y^2z^2)[/math]

Che se vogliamo possiamo scrivere indifferentemente come

[math]2a(x^2-4y^2z^2)(x^2+2xyz+4y^2z^2)[/math]

Oppure

[math]2a(x+2yz)(x^3-8y^3z^3)[/math]
Questo topic è bloccato, non sono ammesse altre risposte.
Come guadagno Punti nel Forum? Leggi la guida completa
In evidenza
Classifica Mensile
Vincitori di novembre
Vincitori di novembre

Come partecipare? | Classifica Community

Community Live

Partecipa alla Community e scala la classifica

Vai al Forum | Invia appunti | Vai alla classifica

Marcello G.

Marcello G. Blogger 2190 Punti

VIP
Registrati via email