dixan
dixan - Erectus - 111 Punti
Salva
calcola l'area della superficie laterale e il volume di un prisma regolare alto 7,5 cm e avente per base un esagono con il lato di 15 cm. ( 675 cm2;4384,125 cm3)

le basi di un prisma retto sono trapezi isosceli con il perimetro di 14 cm.il lato obliquo di ogni trapezio e la sua proiezione sulla base maggiore misurano rispettivamente 2,5 dm e 1,5 dm.l'area della superficie laterale del prisma e' 54,6 dm2.calcola l'altezza del prisma e la sua superficie totale (3,9 dm;72,6 dm2 )

grazie mille e buona pasqua
Max 2433/BO
Max 2433/BO - Genius - 15502 Punti
Salva
1)

La superficie laterale di un prisma è pari a:

[math] S_l = P \;.\; h [/math]

dove

P è il perimetro di base

h è l'altezza del prisma

quindi, nel nostro caso avremo:

[math] S_l = 6\;.\;15\;.\;7,5 = 675\;cm^2 [/math]

Il volume di un prisma è apri a:

[math] V = S_b\;.\;h [/math]

dove

Sb è la superficie di base

Essendo il prisma regolare, e quindi l'esagono di base regolare, per calcolare l'area della superficie di base possiamo sfruttare la formula che permette di calcolare l'area di un poligono regolare dato l'apotema e il semiperimetro:

[math] S_b = \frac {P}{2} \;.\; a [/math]

l'apotema si ricava da apposite tabelle sfruttando un numero fisso che, per l'esagono vale 0,866 e moltiplicandolo per la misura del lato quindi:

[math] a = l\;.\;0,866 = 15\;.\;0,866 = 12,99\;cm [/math]

di conseguenza

[math] S_b = \frac {6\;.\;15}{2}\;.\;12,99 = 584,55\;cm^2 [/math]

e il volume sarà

[math] V = 584,55\;.\;7,5 = 4384,125 \;cm^3 [/math]

... questo è il primo, un attimo e ti posto il secondo

Aggiunto 26 minuti più tardi:

2)
L'altezza del prisma è immediatamente ricavabile in quanto conosciamo il valore della superficie laterale (Sl) e del perimetro di base (P):

[math] S_l = P\;.\;h [/math]

da cui

[math] h = \frac {S_l}{P} = \frac {54,6}{14} = 3,9\;dm [/math]

Calcoliamo adesso le dimensioni delle basi del nostro trapezio.

Sappiamo che il perimetro (P) vale 14 dm (hai scritto cm, ma viste le dimensioni che hai fornito, in dm, presumo tu abbia digitato male... ;) ) e le misure del lato obliquo (lo) e della sua proiezione (pr) sono rispettivamente 2,5 e 1,5 dm, quindi, detta bm la base minore possiamo scrivere:

[math] P = 2\;.\;bm + 2\;.\;lo + 2\;.\;pr [/math]

da qui ricaviamo la misura della base minore

[math] bm = \frac {P - 2\;.\;lo - 2\;.\;pr}{2} = \frac {14 - 2\;.\;2,5 - 2\;.\;1,5}{2} = 3\;dm [/math]

mentre la base maggiore (BM), dati base minore e proiezione dei lati obliqui varrà:

[math] BM = bm + 2\;.\;pr = 3 + 2\;.\;1,5 = 6 \;dm [/math]

Adesso calcoliamo il valore dell'altezza del trapezio (ht) che ci servirà per calcolare l'area della superficie di base (Sb) del prisma utile per il calcolo della sua superficie totale (St).

Applichiamo il t. di Pitagora tra il lato obliquo e la sua proiezione:

[math] ht = \sqrt {lo^2 - pr^2} = \sqrt {2,5^2 - 1,5^2} = 2\;dm [/math]

L'area della superficie di base vale quindi:

[math] S_b = \frac {(bm+BM)\;.\;ht}{2} = \frac {(3+6)\;.\;2}{2} = 9\;dm^2 [/math]

Di conseguenza la superficie totale del nostro prisma sarà:

[math] S_t = S_l + 2\;.\;S_b = 54,6 + 2\;.\;9 = 72,6\;dm^2 [/math]

... ecco a te.

:hi

Massimiliano
dixan
dixan - Erectus - 111 Punti
Salva
ciao il secondo problema non l'ho capito come l'hai scritto non mi risultano i calcoli grazie lo stesso
rino6999
rino6999 - VIP - 7008 Punti
Salva
2)
sup lat = perim di base * altezza prisma.quindi:
altezza prisma =54,6/14 =3,9 dm

siano AB base maggiore , CD base minore del trapezio e AH proiezione del lato obliquo AD su AB
posto CD=x si ha AB=x+3 e quindi x+(x+3)+2*2,5=14 cioè x=3
quindi, CD=3 AB=6

DH=sqr(AD^2-AH^2)=2
area del trapezio =((6+3)*2))/2=9

superficie totale del prisma = 54,6+2*9 =72,6 dm^2
Max 2433/BO
Max 2433/BO - Genius - 15502 Punti
Salva
@ dixan

... cos'è che non hai capito di preciso? Se mi dici quali sono i tuoi dubbi, vediamo se riesco a chiarirti meglio i passaggi della risoluzione del problema :)

Comunque i risultati sono gli stessi che hai indicato tu alla fine del problema:

[math] 3,6\; dm\; [/math]
per il valore dell'altezza
e

[math] 72,6\; dm^2 [/math]
per l'area della superficie totale.
:hi

Massimiliano
Questo topic è bloccato, non sono ammesse altre risposte.
Come guadagno Punti nel Forum? Leggi la guida completa
In evidenza
Classifica Mensile
Vincitori di novembre
Vincitori di novembre

Come partecipare? | Classifica Community

Community Live

Partecipa alla Community e scala la classifica

Vai al Forum | Invia appunti | Vai alla classifica

mc2

mc2 Genius 281 Punti

Comm. Leader
Registrati via email